洛谷 P2015 二叉苹果树

题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。
输入输出格式
输入格式:

第1行2个数,N和Q(1<=Q<= N,1

//洛谷 P2015 二叉苹果树
#include
#include
#include
#include
#include
#define ll long long
#define fo(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
vector <int> f[105],w[105];
int n,m;
int dp[105][105];
inline void dfs(int u,int fa)
{
    for(int i=0;iint v=f[u][i],t=w[u][i];
        if(v==fa) continue;
        dfs(v,u);
        for(int j=m;j;j--)
          fo(k,0,j-1)
            dp[u][j]=max(dp[u][j],dp[u][k]+dp[v][j-k-1]+t);
    }
}
int main()
{
    int u,v,d;
    scanf("%d%d",&n,&m);
    fo(i,2,n)
    {
        scanf("%d%d%d",&u,&v,&d);
        f[u].push_back(v);
        f[v].push_back(u);
        w[u].push_back(d);
        w[v].push_back(d);
    }
    dfs(1,0);
    printf("%d\n",dp[1][m]);
    return 0;
}

你可能感兴趣的:(树形DP)