通信按照基本类型可以分为并行通信和串行通信。
==并行通信时数据的各个位同时传送,可以实现字节为单位通信,但是因为通信线多占用资源多,成本高。==比如我们前边用到的P0 = 0xfe;一次给P0的8个IO口分别赋值,同时进行信号输出,类似于有8个车道同时可以过去8辆车一样,这种形式就是并行的,我们习惯上还称P0、P1、P2和P3为51单片机的4组并行总线。
串行通信,就如同一条车道,一次只能一辆车过去,如果一个0xfe这样一个字节的数据要传输过去的话,假如低位在前高位在后,那发送方式就是0-1-1-1-1-1-1-1-1,一位一位的发送出去的,要发送8次才能发送完一个字节。
我们常用的通信通常可以分为单工、半双工、全双工通信。
单工就是指只允许一方向另外一方传送信息,而另一方不能回传信息。比如我们的电视遥控器,我们的收音机广播等,都是单工通信技术。
半双工是指数据可以在双方之间相互传播,但是同一时刻只能其中一方发给另外一方,比如我们的对讲机就是典型的半双工。
全双工通信就发送数据的同时也能够接受数据,两者同步进行,就如同我们的电话一样,我们说话的同时也可以听到对方的声音。
当单片机1想给单片机2发送数据时,比如发送一个0xE4这个数据,用二进制形式表示就是0b11100100,在UART通信过程中,是低位先发,高位后发的原则,那么就让TXD首先拉低电平,持续一段时间,发送一位0,然后继续拉低,再持续一段时间,又发送了一位0,然后拉高电平,持续一段时间,发了一位1…一直到把8位二进制数字0b11100100全部发送完毕。这里就牵扯到了一个问题,就是持续的这“一段时间”到底是多久?从这里引入我们通信中的另外重要概念——波特率,也叫做比特率。
波特率就是发送一位二进制数据的速率,习惯上用baud表示,即我们发送一位数据的持续时间=1/baud。在通信之前,单片机1和单片机2首先都要明确的约定好他们之间的通信波特率,必须保持一致,收发双方才能正常实现通信,这一点大家一定要记清楚。
约定好速度后,我们还要考虑第二个问题,数据什么时候是起始,什么时候是结束呢?不管是提前接收还是延迟接收,数据都会接收错误。在UART串行通信的时候,一个字节是8位,规定当没有通信信号发生时,通信线路保持高电平,当要发送数据之前,先发一位0表示起始位,然后发送8位数据位,数据位是先低后高的顺序,数据位发完后再发一位1表示停止位。 这样本来要发送一个字节8位数据,而实际上我们一共发送了10位,多出来的两位其中一位起始位,一位停止位。而接收方呢,原本一直保持的高电平,一旦检测到来了一位低电平,那就知道了要开始准备接收数据了,接收到8位数据位后,然后检测到停止位,再准备下一个数据的接收了。我们图示看一下,
像我们的图11-2串口数据发送示意图,实际上是一个时域示意图,就是信号随着时间变化的对应关系。比如在单片机的发送引脚上,左边的是先发生的,右边的是后发生的,数据位的切换时间就是波特率分之一秒,如果能够理解时域的概念,后边很多通信的时序图就很容易理解了。
初始设置
初始设置
#include <reg52.h>
sbit PIN_RXD = P3^0; //接收引脚定义
sbit PIN_TXD = P3^1; //发送引脚定义
bit RxdOrTxd = 0; //指示当前状态为接收还是发送
bit RxdEnd = 0; //接收结束标志
bit TxdEnd = 0; //发送结束标志
unsigned char RxdBuf = 0; //接收缓冲器
unsigned char TxdBuf = 0; //发送缓冲器
void ConfigUART(unsigned int baud);
void StartTXD(unsigned char dat);
void StartRXD();
void main ()
{
ConfigUART(9600); //配置波特率为9600
EA = 1; //开总中断
while(1)
{
while (PIN_RXD); //等待接收引脚出现低电平,即起始位
StartRXD(); //启动接收
while (!RxdEnd); //等待接收完成
StartTXD(RxdBuf+1); //接收到的数据+1后,发送回去
while (!TxdEnd); //等待发送完成
}
}
void ConfigUART(unsigned int baud) //串口配置函数,baud为波特率
{
TMOD &= 0xF0; //清零T0的控制位
TMOD |= 0x02; //配置T0为模式2
TH0 = 256 - (11059200/12) / baud; //计算T0重载值
}
void StartRXD() //启动串行接收
{
TL0 = 256 - ((256-TH0) >> 1); //接收启动时的T0定时为半个波特率周期
ET0 = 1; //使能T0中断
TR0 = 1; //启动T0
RxdEnd = 0; //清零接收结束标志
RxdOrTxd = 0; //设置当前状态为接收
}
void StartTXD(unsigned char dat) //启动串行发送,dat为待发送字节数据
{
TxdBuf = dat; //待发送数据保存到发送缓冲器
TL0 = TH0; //T0计数初值为重载值
ET0 = 1; //使能T0中断
TR0 = 1; //启动T0
PIN_TXD = 0; //发送起始位
TxdEnd = 0; //清零发送结束标志
RxdOrTxd = 1; //设置当前状态为发送
}
void InterruptTimer0() interrupt 1 //T0中断服务函数,处理串行发送和接收
{
static unsigned char cnt = 0; //bit计数器,记录当前正在处理的位
if (RxdOrTxd) //串行发送处理
{
cnt++;
if (cnt <= 8) //低位在先依次发送8bit数据位
{
PIN_TXD = TxdBuf & 0x01;
TxdBuf >>= 1;
}
else if (cnt == 9) //发送停止位
{
PIN_TXD = 1;
}
else //发送结束
{
cnt = 0; //复位bit计数器
TR0 = 0; //关闭T0
TxdEnd = 1; //置发送结束标志
}
}
else //串行接收处理
{
if (cnt == 0) //处理起始位
{
if (!PIN_RXD) //起始位为0时,清零接收缓冲器,准备接收数据位
{
RxdBuf = 0;
cnt++;
}
else //起始位不为0时,中止接收
{
TR0 = 0; //关闭T0
}
}
else if (cnt <= 8) //处理8位数据位
{
RxdBuf >>= 1; //低位在先,所以将之前接收的位向右移
if (PIN_RXD) //接收脚为1时,缓冲器最高位置1;为0时不处理即仍保持移位后的0
{
RxdBuf |= 0x80;
}
cnt++;
}
else //停止位处理
{
cnt = 0; //复位bit计数器
TR0 = 0; //关闭T0
if (PIN_RXD) //停止位为1时,方能认为数据有效
{
RxdEnd = 1; //置接收结束标志
}
}
}
}
位 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|
符号 | SM0 | SM1 | SM2 | REN | TB8 | RB8 | TI | RI |
位 | 符号 | 描述 |
---|---|---|
7 | SM0 | 这两位共同决定了串口通信的模式0到模式3共4种模式。 |
6 | SM1 | 这两位共同决定了串口通信的模式0到模式3共4种模式。 |
5 | SM2 | 多机通信控制位(很少用),模式1直接清零。 |
4 | REN | 使能串行接收。由软件置位使能接收,软件清零则禁止接收。 |
3 | TB8 | 模式2和3中将要发送的第9位数据(很少用)。 |
2 | RB8 | 模式2和3中接收第9位数据(很少用),模式1用来接收停止位。 |
1 | TI | 发送中断标志位,模式1下,在数据位最后一位发送结束,开始发送停止位时由硬件自动置1,必须通过软件清零。也就是说,再发送前我们清零TI,发送数据,数据发送到停止位时,TI硬件置1,方便我们CPU查询发送完毕状态。 |
0 | RI | 接收中断标志位,当接收电路接收到停止位的中间位置时,RI由硬件置1。也就是说,接收数据之前我们必须清零RI,接受数据到停止位的中间位置时,RI硬件置1,方便我们CPU查询到接收状态。 |
SM2 : 多机通信控制位。 该仅用于方式2 和方式3 的多机通信。其中发送机SM2 = 1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。==当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。==工作于方式0 时,SM2 必须为0。
REN : 串行接收允许位:REN =0 时,禁止接收;REN =1 时,允许接收。
TB8 : 在方式2、3 中,TB8 是发送机要发送的第9 位数据。在多机通信中它代表传输的地址或数据,TB8=0 为数据,TB8=1 时为地址。
RB8 : 在方式2、3 中,RB8 是接收机接收到的第9 位数据,该数据正好来自发送机的TB8,从而识别接收到的数据特征。
TI : 串行口发送中断请求标志。当CPU 发送完一串行数据后,此时SBUF 寄存器为空,硬件使TI 置1,请求中断。CPU 响应中断后,由软件对TI 清零。
RI : 串行口接收中断请求标志。当串行口接收完一帧串行数据时,此时SBUF 寄存器为满,硬件使RI 置1,请求中断。CPU 响应中断后,用软件对RI 清零。
在我们使用IO口模拟串口通信的时候,我们串口的波特率是使用定时器0的中断体现出来的。在实际串口模块中,有一个专门的波特率发生器用来控制发送数据的速度和读取接收数据的速度。对于STC89C52RC单片机来讲,这个波特率发生器只能由定时器1或定时器2产生,而不能由定时器0产生,这和我们模拟的通信是完全不同的概念。
如果用定时器2,需要配置额外的寄存器,默认是使用定时器1的
我们本章内容主要是使用定时器1作为波特率发生器来讲解,方式1下的波特率发生器必须使用定时器1的模式2,也就是自动重装载模式,定时器的初值具体的计算公式是:
TH1 = TL1 = 256 - 晶振值/12 /2/16 /波特率
和波特率有关的还有一个寄存器,是一个电源管理寄存器PCON,他的最高位可以把波特率提高一倍,也就是如果写PCON |=0x80以后,计算公式就成了
TH1 = TL1 = 256 - 晶振值/12 /16 /波特率
数字的含义这里解释一下,
256是8位数据的溢出值,也就是TL1的溢出值
12是说1个机器周期是12个时钟周期
值得关注的是这个16,重点说明。我们在IO口模拟串口通信接收数据的时候,我们采集的是这一位数据的中间位置,而实际上串口模块比我们模拟的要复杂和精确一些。他采取的方式是把一位信号采集16次,其中第7、8、9次取出来,这三次中其中两次如果是高电平,那么就认定这一位数据是1,如果两次是低电平,那么就认定这一位是0,这样一旦受到意外干扰读错一次数据,也依然可以保证最终数据的正确性。
51芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M 的晶振来计算,那么它的波特率可以达到1M。模式2的波特率是固定在fosc/64 或fosc/32,具体用那一种就取决于PCON 寄存器中的SMOD位,如SMOD 为0,波特率为focs/64,SMOD 为1,波特率为focs/32。
模式1和模式3的波特率是可变的,取决于定时器1或2(52芯片)的溢出速率,就是说定时器 1每溢出一次,串口发送一次数据。那么我们怎么去计算这两个模式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。
串口通信的发送和接收电路,我们主要了解一下他们在物理上有2个名字相同的SBUF寄存器,他们的地址也都是99H,但是一个用来做发送缓冲,一个用来做接收缓冲。意思就是说,有2个房间,两个房间的门牌号是一样的,其中一个只出人不进人,另外一个只进人不出人,这样的话,我们就可以实现UART的全双工通信,相互之间不会产生干扰。但是在逻辑上呢,我们每次只操作SBUF,单片机会自动根据对它执行的是“读”还是“写”操作来选择是接收SBUF还是发送SBUF,后边通过程序,我们就会彻底了解这个问题。
了解了串口采集模式,在这里要给大家留一个思考题。“晶振值/12/2/16/波特率”这个地方计算的时候,出现不能除尽,或者出现小数怎么办,允许出现多大的偏差?把这部分理解了,也就理解了我们的晶振为何使用11.0592M了。
位 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
---|---|---|---|---|---|---|---|---|
符号 | SMOD | GF1 | GF0 | PD(PCON.1) | IDL(PCON.0) |
SMOD : 波特率加倍位。SMOD=1,当串行口工作于方式1、2、3 时,波特率加倍。SMOD=0,波特率不变。
GF1、GF0 : 通用标志位。(通用的标志位 可以用作任意功能 不同的是他的名字已经在头文件中定义好了 可以直接使用 )
PD(PCON.1) :掉电方式位。当PD=1 时,进入掉电方式。
IDL(PCON.0) :待机方式位。当IDL=1 时,进入待机方式。
另外与串行口相关的寄存器有前面文章叙述的定时器相关寄存器和中断寄存器。定时器寄存器用来设定波特率。中断允许寄存器IE 中的ES 位也用来作为串行I/O 中断允许位。当ES = 1,允许 串行I/O 中断;当ES = 0,禁止串行I/O 中断。中断优先级寄存器IP的PS 位则用作串行I/O 中断优先级控制位。当PS=1,设定为高优先级;当PS =0,设定为低优先级。
一、晶振是12MHZ的比较简单:
振荡周期:1/12us
机器周期:1us
定时器T0,工作方式一
定时1ms就是1000;TH0=(65536-1000)/256; TL0=(65536-1000)%256
定时50ms就是50000,TH0=(65536-50000)/256; TL0=(65536-50000)%256 ;循环溢出20次就是1s;
二、晶振是11.0592MHZ
振荡周期1/11.0592
机器周期12/11.0592 ≈1.085 us
921600个机器周期时间 =92160012/11059200=1s=1000ms
赋初值0x1000=(4096)D TH0=10;TL0=00 循环溢出15次是1s; 15(65536-4096)12/11.0592 =1s
10ms 准确定时9216个机器周期921612/11059200=10ms TH0= (65536-9216)/256; TL0=(65536-9216)%
20ms 准确定时18432个机器周期TH0= (65536-18432)/256; TL0=(65536-18432)%
50ms准确定时59216=46080个机器周期59216*12/11059200=50ms ; TH0= (65536-46080)/256; TL0=(65536-65536)%
1ms误差较大TH0= (65536-921)/256; TL0=(65536-921)%256
1、配置串口为模式1。
2、配置定时器T1为模式2,即自动重装模式。
3、确定波特率大小,计算定时器TH1和TL1的初值,如果有需要可以使用PCON进行波特率加倍。
4、打开定时器控制寄存器TR1,让定时器跑起来。
这个地方还要特别注意一下,就是在使用T1做波特率发生器的时候,千万不要再使能T1的中断了。
void ConfigUART(unsigned int baud) //串口配置函数,baud为波特率
{
SCON = 0x50; //配置串口为模式1
TMOD &= 0x0F; //清零T1的控制位
TMOD |= 0x20; //配置T1为模式2
TH1 = 256 - (11059200/12/32) / baud; //计算T1重载值
TL1 = TH1; //初值等于重载值
ET1 = 0; //禁止T1中断
TR1 = 1; //启动T1
}
void SendData(BYTE dat)
{
while (!TI); //等待前一个数据发送完成
TI = 0; //清除发送标志
SBUF = dat; //发送当前数据
}
I2C总线的主要特点是接口方式简单,两条线可以挂多个参与通信的器件,即多机模式,而且任何一个器件都可以作为主机,当然同一时刻只能一个主机。
I2C属于同步通信,SCL时钟线负责收发双方的时钟节拍,SDA数据线负责传输数据。I2C的发送方和接收方都以SCL这个时钟节拍为基准进行数据的发送和接收。
从应用上来讲,UART通信多用于板间通信,比如单片机和电脑,这个设备和另外一个设备之间的通信。而I2C多用于板内通信,比如单片机和我们本章要学的EEPROM之间的通信。
在硬件上,I2C总线是由时钟总线SCL和数据总线SDA两条线构成,连接到总线上的所有的器件的SCL都连到一起,所有的SDA都连到一起。
只有一根数据线,所以是半双工通信。
I2C总线是开漏引脚并联的结构,因此我们外部要添加上拉电阻。对于开漏电路外部加上拉电阻的话,那就组成了线“与”的关系。总线上线“与”的关系,那所有接入的器件保持高电平,这条线才是高电平。而任意一个器件输出一个低电平,那这条线就会保持低电平,因此可以做到任何一个器件都可以拉低电平,也就是任何一个器件都可以作为主机,如图所示,我们添加了R63和R64两个上拉电阻。
虽然说任何一个设备都可以作为主机,但绝大多数情况下我们都是用微处理器,也就是我们的单片机来做主机,而总线上挂的多个器件,每一个都像电话机一样有自己唯一的地址,在信息传输的过程中,通过这唯一的地址可以正常识别到属于自己的信息,在我们的KST-51开发板上,就挂接了2个I2C设备,一个是24C02,一个是PCF8591。
我们在学习UART串行通信的时候,知道了我们的通信流程分为起始位、数据位、停止位这三部分,同理在I2C中也有起始信号、数据传输和停止信号。
从图上可以看出来,I2C和UART时序流程有相似性,也有一定的区别。UART每个字节中,都有一个起始位,8个数据位和1位停止位。而I2C分为起始信号 ,数据传输部分 ,最后是停止信号 。其中数据传输部分,可以一次通信过程传输很多个字节,字节数是不受限制的,而每个字节的数据最后也跟了一位,这一位叫做应答位 ,通常用ACK表示,有点类似于UART的停止位。
下面我们一部分一部分的把I2C通信时序进行剖析。之前我们学过了UART,所以学习I2C的过程我尽量拿UART来作为对比,这样有助于更好的理解。但是有一点大家要理解清楚,就是UART通信虽然我们用了TXD和RXD两根线,但是实际一次通信,1条线就可以完成,2条线是把发送和接收分开而已,而I2C每次通信,不管是发送还是接收,必须2条线都参与工作才能完成。
起始信号:I2C通信的起始信号的定义是SCL为高电平期间,SDA由高电平向低电平变化产生一个下降沿,表示起始信号,如图中的start部分所示。
数据传输:首先,UART是低位在前,高位在后;而I2C通信 是高位在前,低位在后。第二,UART通信数据位是固定长度,波特率分之一,一位一位固定时间发送完毕就可以了。而I2C没有固定波特率,但是有时序的要求,要求当SCL在低电平的时候,SDA允许变化,也就是说,发送方必须先保持SCL是低电平,才可以改变数据线SDA,输出要发送的当前数据的一位;而当SCL在高电平的时候,SDA绝对不可以变化,因为这个时候,接收方要来读取当前SDA的电平信号是0还是1,因此要保证SDA的稳定不变化,如图14-3中的每一位数据的变化,都是在SCL的低电平位置。8为数据位后边跟着的是一位响应位,响应位我们后边还要具体介绍。
停止信号:UART通信的停止位是一位固定的高电平信号;而I2C通信停止信号的定义是SCL为高电平期间,SDA由低电平向高电平变化产生一个上升沿,表示结束信号,如图14-3中的stop部分所示。
I2C通信在字节级的传输中,也有固定的时序要求。I2C通信的起始信号(Start)后,首先要发送一个从机的地址,这个地址一共有7位,紧跟着的第8位是数据方向位(R/W),‘0’表示接下来要发送数据(写),‘1’表示接下来是请求数据(读)。
我们知道,打电话的时候,当拨通电话,接听方捡起电话肯定要回一个“喂”,这就是告诉拨电话的人,这边有人了。同理,这个第九位ACK实际上起到的就是这样一个作用。当我们发送完了这7位地址和1位方向位,如果我们发送的这个地址确实存在,那么这个地址的器件应该回应一个ACK‘0’,如果不存在,就没“人”回应ACK。
本文转载:
http://www.51hei.com/bbs/dpj-22296-1.html
http://news.eeworld.com.cn/mcu/2015/1113/article_23649.html