传送门
观察式子的组合意义
就是随便填出一个序列
每次随便在 a a a里选一个填
要求和为 m m m的方案数
那么显然有转移
f i = ∑ j f i − a j f_i=\sum_jf_{i-a_j} fi=∑jfi−aj
然后做常系数齐次线性递推即可
预处理 f 1 − 23333 f_{1-23333} f1−23333可以用多项式求逆
#include
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
inline ll readll(){
char ch=gc();
ll res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
inline int readstring(char *s){
int top=0;char ch=gc();
while(isspace(ch))ch=gc();
while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=104857601;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){if(a==0&&b==0)return 0;for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
typedef vector<int> poly;
namespace Poly{
cs int C=16,M=(1<<C)+5,G=3;
int *w[C+1],rev[M];
inline void init_rev(int lim){
for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void init_w(){
for(int i=1;i<=C;i++)w[i]=new int[(1<<(i-1))|1];
int wn=ksm(G,(mod-1)/(1<<C));w[C][0]=1;
for(int i=1,l=1<<(C-1);i<l;i++)w[C][i]=mul(w[C][i-1],wn);
for(int i=C-1;i;i--)
for(int j=0,l=1<<(i-1);j<l;j++)w[i][j]=w[i+1][j<<1];
}
inline void ntt(int *f,int lim,int kd){
for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
for(int i=0;i<lim;i+=mid<<1)
for(int j=0;j<mid;j++)
a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
if(kd==-1){
reverse(f+1,f+lim);
for(int i=0,iv=Inv(lim);i<lim;i++)Mul(f[i],iv);
}
}
inline poly operator *(poly a,poly b){
int deg=a.size()+b.size()-1;
if(deg<=32){
poly c(deg,0);
for(int i=0;i<a.size();i++)
for(int j=0;j<b.size();j++)
Add(c[i+j],mul(a[i],b[j]));
return c;
}
int lim=1;
while(lim<deg)lim<<=1;
init_rev(lim);
a.resize(lim),ntt(&a[0],lim,1);
b.resize(lim),ntt(&b[0],lim,1);
for(int i=0;i<lim;i++)Mul(a[i],b[i]);
ntt(&a[0],lim,-1),a.resize(deg);
return a;
}
inline poly operator -(poly a,cs poly &b){
a.resize(max(a.size(),b.size()));
for(int i=0;i<b.size();i++)Dec(a[i],b[i]);
return a;
}
inline poly Inv(poly a,int deg){
poly b(1,::Inv(a[0])),c;
for(int lim=4;lim<(deg<<2);lim<<=1){
init_rev(lim);
c.resize(lim>>1);
for(int i=0;i<(lim>>1);i++)c[i]=(i<a.size()?a[i]:0);
b.resize(lim),c.resize(lim);
ntt(&b[0],lim,1),ntt(&c[0],lim,1);
for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
ntt(&b[0],lim,-1),b.resize(lim>>1);
}b.resize(deg);return b;
}
inline poly operator /(poly a,poly b){
int n=a.size(),m=b.size();
reverse(a.bg(),a.end()),a.resize(n-m+1);
reverse(b.bg(),b.end()),b.resize(n-m+1);
a=a*Inv(b,n-m+1),a.resize(n-m+1);
reverse(a.bg(),a.end());
return a;
}
inline poly operator %(poly a,poly b){
if(a.size()<b.size())return a;
a=a-(a/b)*b,a.resize((int)b.size()-1);
return a;
}
}
using namespace Poly;
cs int lim=23333;
poly mo,ff;
int n,mx,A,B,v,vt[lim+5];
ll m;
int main(){
#ifdef Stargazer
freopen("lx.in","r",stdin);
#endif
init_w();
n=read(),m=readll();
v=read(),A=read(),B=read();
if(v<=lim)chemx(mx,v),vt[v]++;
for(int i=2;i<=n;i++){
v=(1ll*v*A+B)%lim+1;
chemx(mx,v),vt[v]++;
}
mo.resize(mx+1),ff.resize(mx+1);
mo[mx]=1;
for(int i=1;i<=mx;i++)mo[mx-i]=dec(0,vt[i]),ff[i]=dec(0,vt[i]);
ff[0]++;
ff=Inv(ff,mx+1);
poly f(1,1),g(2);g[1]=1;
for(;m;m>>=1,g=g*g%mo)if(m&1)f=f*g%mo;
f.resize(mx);
int res=0;
for(int i=0;i<mx;i++)Add(res,mul(ff[i],f[i]));
cout<<res<<'\n';
return 0;
}