代码学习 (2) :Unsupervised Monocular Depth Estimation with Left-Right Consistency

代码学习笔记

Unsupervised Monocular Depth Estimation with Left-Right Consistency :monodepth_dataloader.py
源码:monodepth


"""
    代码学习 注释专用
    song
    stay hungry stay foolish

"""

from __future__ import absolute_import, division, print_function
import tensorflow as tf


def string_length_tf(t):  # 测量tensor长度
    return tf.py_func(len, [t], [tf.int64])  # tf.py_func 提供对tensor的操作接口 


class MonodepthDataloader(object):  # 定义类 MonodepthDataloader
    """monodepth dataloader"""

    def __init__(self, data_path, filenames_file, params, dataset, mode):
        self.data_path = data_path  # 数据路径
        self.params = params  # 参数
        self.dataset = dataset  # 数据集
        self.mode = mode  # 模型

        self.left_image_batch  = None  # 定义赋值变量 采用默认值
        self.right_image_batch = None

        input_queue = tf.train.string_input_producer([filenames_file], shuffle=False)
        """
        把输入的数据进行按照要求排序成一个队列。 这里把KITTI的图片文件名 整理 成一个队列(queue)
             Tip:这里的 shuffle 是布尔值的意思,默认为TRUE 。会改变input的顺序
        """
        line_reader = tf.TextLineReader()  # 创建一个 TextLineReader 文件
        _, line = line_reader.read(input_queue)  # 输出键值对
        """
        一个键值对如下图所示:
        key:  第几个键值对
        b'kitti_train_files.txt:11987'
        value:  包含的内容,即 一对双目图像的路径
        b'2011_09_30/2011_09_30_drive_0033_sync/image_02/data/0000001585.jpg 2011_09_30/2011_09_30_drive_0033_sync/image_03/data/0000001585.jpg'
        """
        split_line = tf.string_split([line]).values  # 将两张图片的地址字符串分开

        # we load only one image for test, except if we trained a stereo model
        if mode == 'test' and not self.params.do_stereo:  # 单张图片的测试
            left_image_path  = tf.string_join([self.data_path, split_line[0]])
            left_image_o  = self.read_image(left_image_path)  # 读取图片
        else:  # 两张图片的测试 stereo
            left_image_path  = tf.string_join([self.data_path, split_line[0]])
            right_image_path = tf.string_join([self.data_path, split_line[1]])
            left_image_o  = self.read_image(left_image_path)
            right_image_o = self.read_image(right_image_path)

        if mode == 'train':  # 训练模型
            # randomly flip images  # 随机翻转图片 用来实现数据增强
            do_flip = tf.random_uniform([], 0, 1)
            left_image  = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(right_image_o), lambda: left_image_o)
            right_image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(left_image_o),  lambda: right_image_o)

            # randomly augment images  # 随机增强图片 用来实现数据增强
            do_augment  = tf.random_uniform([], 0, 1)
            left_image, right_image = tf.cond(do_augment > 0.5, lambda: self.augment_image_pair(left_image, right_image), lambda: (left_image, right_image))

            left_image.set_shape( [None, None, 3])
            right_image.set_shape([None, None, 3])
            """
            set_shpape 和 reshape 
            set_shape 是重新定义 placeholder 的 shape
            reshape 是重新定义 对应参数的 shape
            """

            # capacity = min_after_dequeue + (num_threads + a small safety margin) * batch_size
            min_after_dequeue = 2048
            capacity = min_after_dequeue + 4 * params.batch_size
            self.left_image_batch, self.right_image_batch = tf.train.shuffle_batch([left_image, right_image],
                        params.batch_size, capacity, min_after_dequeue, params.num_threads)
            # 提取出一个 batch 训练所需要的所有 tensor
            """
            def shuffle_batch(tensors: Any,   # 入队的张量列表
                  batch_size: Any,    # 一次批处理的 tensor 数量
                  
                  capacity: {__sub__},   # 队列中的最大元素数
                  capacity=(min_after_dequeue+(num_threads+a small safety margin∗batchsize)
                  
                  min_after_dequeue: Any,   # 当一次出列操作完成后,队列中元素的最小数量,往往用于定义元素的混合级别.
                  定义了随机取样的缓冲区大小,此参数越大表示更大级别的混合但是会导致启动更加缓慢,并且会占用更多的内存
                 
                  num_threads: int = 1,   # 多线程操作
                  seed: Any = None,
                  enqueue_many: bool = False,
                  shapes: Any = None,
                  allow_smaller_final_batch: bool = False,
                  shared_name: Any = None,
                  name: Any = None)
            """
        elif mode == 'test':  # 测试模式
            self.left_image_batch = tf.stack([left_image_o,  tf.image.flip_left_right(left_image_o)],  0)
            """
            left_image_o 是图取的图片的 tensor  , 翻转之后组合。对第 0 维度进行拼接 ,就是变成了 [ 512,512,3 ] 的矩阵
            """
            self.left_image_batch.set_shape( [2, None, None, 3])  # 定义 一个 batch 为一个四维的数组。这样就变成了两张图片的矩阵

            if self.params.do_stereo:  # 如果是双目图片的测试 ,则加入对右边图片的处理
                self.right_image_batch = tf.stack([right_image_o,  tf.image.flip_left_right(right_image_o)],  0)
                self.right_image_batch.set_shape( [2, None, None, 3])

    def augment_image_pair(self, left_image, right_image):  # 图片增强
        # randomly shift gamma
        random_gamma = tf.random_uniform([], 0.8, 1.2)
        left_image_aug  = left_image  ** random_gamma  # 随机的进行 参数为(0.8,1.2)的伽马增强
        right_image_aug = right_image ** random_gamma

        # randomly shift brightness
        random_brightness = tf.random_uniform([], 0.5, 2.0)
        left_image_aug  =  left_image_aug * random_brightness  # 改变亮度
        right_image_aug = right_image_aug * random_brightness

        # randomly shift color
        random_colors = tf.random_uniform([3], 0.8, 1.2)
        white = tf.ones([tf.shape(left_image)[0], tf.shape(left_image)[1]])  # tf.ones 生成值为 0 大小为 [left_image] 的矩阵
        color_image = tf.stack([white * random_colors[i] for i in range(3)], axis=2)  # 生成 随机像素矩阵
        left_image_aug  *= color_image
        right_image_aug *= color_image  # 改变 color

        # saturate
        left_image_aug  = tf.clip_by_value(left_image_aug,  0, 1)
        right_image_aug = tf.clip_by_value(right_image_aug, 0, 1)  # 图像的归一化 像素值在(0,1)之间

        return left_image_aug, right_image_aug

    def read_image(self, image_path): # decode image
        # tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
        path_length = string_length_tf(image_path)[0]
        file_extension = tf.substr(image_path, path_length - 3, 3)  # 提取文件扩展名
        file_cond = tf.equal(file_extension, 'jpg')  # 返回一个布尔值(TRUE or FALSE),判断文件名是否为 jpg
        
        image  = tf.cond(file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)), lambda: tf.image.decode_png(tf.read_file(image_path)))

        # 进行 图片的解码 工作
        # if the dataset is cityscapes, we crop the last fifth to remove the car hood
        if self.dataset == 'cityscapes':
            o_height    = tf.shape(image)[0]
            crop_height = (o_height * 4) // 5
            image  =  image[:crop_height,:,:]   # 提取 cityscapes 数据集中所有照片的前 4/5 部分

        image  = tf.image.convert_image_dtype(image,  tf.float32)  # 图片归一化 浮点型
        image  = tf.image.resize_images(image,  [self.params.height, self.params.width], tf.image.ResizeMethod.AREA)
        # 重新 resize 图片大小 变成 256 * 512 的图片
        return image


"""
通过 monodepthload.py 我们可以知道模型输入的整体流程:
Train :
输入 ==  left_image_o == left_image(经过图像增强) (重新set_shape,变成了三维矩阵) == 输出训练的 left_image_batch(三维)

Test:
输入 == left_image_batch (翻转,合并,四维矩阵)
"""

你可能感兴趣的:(笔记,python,单目估计)