- go build -gcflags 参数学习
岳来
golanggolang学习开发语言
文章目录一、常用编译选项二、使用模式与包匹配规则三、应用场景与注意事项四、其他相关参数五、删除-gcflagsall=-N-l对构建的影响参考文档gobuild的-gcflags参数用于向Go编译器(gotoolcompile)传递额外选项,控制编译行为。其格式为-gcflags="[pattern=]arglist",其中pattern定义作用范围,arglist是空格分隔的编译选项。以下是关键
- 什么是 PoW(工作量证明,Proof of Work)
MonkeyKing.sun
区块链
共识算法(ConsensusAlgorithm)是区块链的“心脏”,它决定了多个节点在没有中央机构的前提下,如何就“谁来记账”达成一致。什么是PoW(工作量证明,ProofofWork)定义:工作量证明(ProofofWork,简称PoW)是一种共识机制,要求节点通过解决一个高难度数学问题,来获得记账权。第一个算出答案的节点获得“打包交易→生成区块→获取奖励”的权利。它是比特币、以太坊(1.0)等
- 实现make_power_of_two函数
洞阳
c++面试c++
目录代码make_power_of_two函数解析:将数值转换为大于等于它的最小2的幂一、函数功能与核心逻辑二、代码实现与逐行解析三、逐步骤原理解析四、位运算的数学原理五、不同输入的转换示例六、算法复杂度与适用场景七、与其他实现方式的对比八、注意事项总结代码该函数将任意n转换为大于等于n的最小2的幂(如n=10→16,n=16→16)size_tmake_power_of_two(size_tn)
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- 【数据标注师】语音切割转写
试着
数据标注师数据标注师语音切割转写
目录**一、语音标注任务解析****任务类型矩阵****核心挑战****二、硬件与工具准备****专业级工作环境配置****必备工具掌握****三、核心技能深度训练****模块1:精准切割技术****模块2:专业级听辨能力****模块3:转写规范体系****四、复杂场景攻坚策略****场景1:多人对话分割****场景2:专业领域转写****五、质量与效率双提升****质检避错清单****效率提升方
- Flink项目基础配置指南
Edingbrugh.南空
flink大数据flink大数据
在大数据处理领域,ApacheFlink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发FlinkJar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- JavaScript 核心对象深度解析:Math、Date 与 String
小宁爱Python
前端javascript开发语言ecmascript
JavaScript作为Web开发的核心语言,提供了丰富的内置对象来简化编程工作。本文将深入探讨三个重要的内置对象:Math、Date和String,通过详细的代码示例和综合案例帮助你全面掌握它们的用法。一、Math对象Math对象提供了一系列静态属性和方法,用于执行各种数学运算,无需实例化即可使用。常用属性:console.log(Math.PI);//圆周率:3.141592653589793
- 从入门到精通:前端工程师必学的 JSON 全解析
前端视界
前端json状态模式ai
从入门到精通:前端工程师必学的JSON全解析关键词:JSON、前端工程师、数据交换、JavaScript、数据格式摘要:本文围绕前端工程师必学的JSON展开全面解析。从JSON的基本概念、背景知识入手,深入探讨其核心原理、算法实现、数学模型等方面。通过详细的代码示例和实际应用场景分析,帮助前端工程师从入门到精通掌握JSON的使用。同时,提供了丰富的学习资源、开发工具和相关论文推荐,最后对JSON的
- redis的持久化
2401_85327573
redis数据库缓存
Redis的持久化机制是其重要特性之一,允许将内存中的数据保存到磁盘,以防止数据丢失或支持系统重启后数据恢复;Redis提供两种主要持久化方式:RDB(快照)和AOF(追加日志)。1.Redis持久化机制(1)RDB(快照)RDB持久化通过定期将内存中的数据集快照保存到磁盘上的二进制文件。-工作原理:-Redis在满足特定条件(如时间间隔或操作次数)时,触发快照操作。-优点:-文件紧凑,适合备份和
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- C++ 第三阶段项目二:异步日志系统
程序员弘羽
C++从入门到入土连载c++开发语言
目录一、项目目标二、功能需求1.核心功能2.扩展功能(后续可实现)三、实现思路1.整体架构设计2.关键技术点3.性能优化策略4.示例代码结构四、代码实现1.日志消息结构体2.线程安全队列(阻塞队列)3.日志处理器(后台线程)4.日志记录器(对外接口)五、运行示例1.示例代码:调用日志接口2.输出日志文件示例3.编译与运行六、代码关键点说明七、注意事项性能优化:线程安全:扩展性:八、扩展示例1.远程
- spring05-Spring核心:AOP面向切面编程
ruleslol
springspring
一、什么是AOP?AOP是为了解决“横切关注点”问题的一种编程范式。在一个项目中,有很多功能不是业务核心逻辑,但又会反复出现在多个地方,例如:日志记录权限校验登录状态检查统计耗时异常处理这些逻辑与“业务方法”不在一个维度上,但又必须“附着在”业务方法上。AOP就是用来把这些“通用功能”抽出来,统一管理和复用的。1、案例背景有一个登录流程,希望在不修改源代码的情况下,添加权限判断模块,使得用户在校验
- 基于PaddleOCR的表格识别系统开发
pk_xz123456
仿真模型深度学习算法深度学习开发语言分类安全cnn
基于PaddleOCR的表格识别系统开发1.项目概述本项目旨在使用PaddleOCR框架开发一个高性能的表格识别系统,能够准确识别约30种不同类型的表格结构。系统将处理2500张合成表格图像作为训练数据,并在合成测试集上进行评估。系统核心功能包括表格检测、表格结构识别和表格内容识别三部分。1.1项目背景表格是信息传递的重要载体,广泛存在于各类文档中。传统表格识别方法需要复杂的规则和模板,而基于深度
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- Deepoc大模型在半导体技术芯片性能应用协助突破物理极限
Deepoch
人工智能网络智能化AI科技数据分析硬件工程信息与通信
半导体垂直大模型在芯片设计中的应用与技术突破半导体垂直大模型(SemiconductorVerticalLLM)是专为芯片设计、制造与优化领域训练的大规模人工智能模型,其通过融合半导体物理、工艺知识、设计规则及行业经验,正在重构芯片开发全流程。以下从设计流程革新、性能优化、可靠性提升三大维度,结合具体技术路径与行业案例,解析其应用场景与价值。Deepoc模型在半导体技术应用中取得了巨大突破,可以协
- 青少年编程与数学 01-012 通用应用软件简介 18 短视频平台
明月看潮生
编程与数学第01阶段青少年编程音视频编程与数学应用软件短视频
青少年编程与数学01-012通用应用软件简介18短视频平台一、什么是短视频平台(一)短视频平台的基本定义(二)短视频平台的工作原理(三)短视频平台的类型二、短视频平台的重要意义(一)为用户提供丰富的娱乐内容(二)推动数字内容创作的民主化(三)促进文化的传播与交流(四)提升用户互动性和社交性(五)推动数字经济的发展三、短视频平台主要产品(一)抖音1.软件功能2.特色3.市场地位和市场价值4.增值服务
- Windows系统部署YOLOv5 v6.1版本的训练与推理环境保姆级教程
lujx_1024
windowsYOLO
文章目录一·概述二·依赖环境(`prerequisites`)2.1硬件环境2.2软件环境三·环境安装3.1创建并激活虚拟环境3.2安装`Pytorch`与`torchvision`3.3校验`Pytorch`安装3.4下载`YOLOv5``v6.1`源码3.5安装`YOLOv5`依赖3.6下载预训练模型3.7安装其他依赖3.8测试环境安装3.9测试训练流程四·参考链接一·概述本文档主要记录使用工
- 分布式训练架构解析
一、分布式训练的问题根源与需求驱动在深度学习领域,模型与数据规模呈指数级增长趋势,传统单机训练模式已难以满足日益复杂的业务需求,分布式训练技术应运而生,其核心驱动力源于以下三大关键困境:1.1算力瓶颈与训练效率危机单GPU设备的计算能力存在物理上限。以NVIDIAA100为例,其单卡FP32算力约为19.5TFLOPS,面对GPT-4这样拥有1.8万亿参数的超大型模型,若采用单机单卡训练,仅完成一
- 【问题记录】npm create vue@latest报错
菜鸟级后端
问题记录npmvue.js前端
1,错误日志npmerrorcodeEPERMnpmerrorsyscallmkdirnpmerrorpathD:\ProgramFiles\nodejs\node_cache\_cacachenpmerrorerrnoEPERMnpmerrorFetchError:Invalidresponsebodywhiletryingtofetchhttps://registry.npmjs.org/cr
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- linux系统中如何查看日志 (常用命令)
darling_user
Linux
cattail-f日志文件说明/var/log/message系统启动后的信息和错误日志,是RedHatLinux中最常用的日志之一/var/log/secure与安全相关的日志信息/var/log/maillog与邮件相关的日志信息/var/log/cron与定时任务相关的日志信息/var/log/spooler与UUCP和news设备相关的日志信息/var/log/boot.log守护进程启动
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st