CodeForces_1360H Binary Median(数论+暴力)

Binary Median

time limit per test:2 seconds
memory limit per test:256 megabytes

Problem Description

Consider all binary strings of length m m m ( 1 ≤ m ≤ 60 1≤m≤60 1m60). A binary string is a string that consists of the characters 0 and 1 only. For example, 0110 is a binary string, and 012aba is not. Obviously, there are exactly 2 m 2^m 2m such strings in total.

The string s is lexicographically smaller than the string t (both have the same length m) if in the first position i from the left in which they differ, we have s [ i ] < t [ i ] s[i]s[i]<t[i]. This is exactly the way strings are compared in dictionaries and in most modern programming languages when comparing them in a standard way. For example, the string 01011 01011 01011 is lexicographically smaller than the string 01100, because the first two characters are the same, and the third character in the first string is less than that in the second.

We remove from this set n n n ( 1 ≤ n ≤ m i n ( 2 m − 1 , 100 ) 1≤n≤min(2^m−1,100) 1nmin(2m1,100)) distinct binary strings a 1 a_1 a1, a 2 a_2 a2,…, a n a_n an, each of length m. Thus, the set will have k = 2 m − n k=2^m−n k=2mn strings. Sort all strings of the resulting set in lexicographical ascending order (as in the dictionary).

We number all the strings after sorting from 0 0 0 to k − 1 k−1 k1. Print the string whose index is ⌊ k − 1 ⌋ 2 \frac{⌊k−1⌋}{2} 2k1 (such an element is called median), where ⌊ x ⌋ ⌊x⌋ x is the rounding of the number down to the nearest integer.

For example, if n = 3 n=3 n=3, m = 3 m=3 m=3 and a = [ 010 , 111 , 001 ] a=[010, 111, 001] a=[010,111,001], then after removing the strings ai and sorting, the result will take the form: [ 000 , 011 , 100 , 101 , 110 ] [000, 011, 100, 101, 110] [000,011,100,101,110]. Thus, the desired median is 100 100 100.

Input

The first line contains an integer t t t ( 1 ≤ t ≤ 1000 1≤t≤1000 1t1000) — the number of test cases. Then, t test cases follow.

The first line of each test case contains integers n n n ( 1 ≤ n ≤ m i n ( 2 m − 1 , 100 ) 1≤n≤min(2^m−1,100) 1nmin(2m1,100)) and m ( 1 ≤ m ≤ 60 1≤m≤60 1m60), where n is the number of strings to remove, and m is the length of binary strings. The next n lines contain a 1 a_1 a1, a 2 a_2 a2,…, a n a_n an — distinct binary strings of length m.

The total length of all given binary strings in all test cases in one test does not exceed 1 0 5 10^5 105.

Output

Print t answers to the test cases. For each test case, print a string of length m — the median of the sorted sequence of remaining strings in the corresponding test case.

Sample Input

5
3 3
010
001
111
4 3
000
111
100
011
1 1
1
1 1
0
3 2
00
01
10

Sample Output

100
010
0
1
11

题意

2 m 2^m 2m个数,依次为 0 , 1 , 2 , . . . . . , 2 m − 1 0,1,2,.....,2^m-1 0,1,2,.....,2m1。从中删除n个数,则还剩 k = 2 m − n k=2^m-n k=2mn个数,求剩下的序列中下标(从0开始)为 ⌊ k − 1 ⌋ 2 \frac{⌊k−1⌋}{2} 2k1的数是多少。

题解

只考虑原序列,则所求为 x = ⌊ 2 m − 1 ⌋ 2 x = \frac{⌊2^m−1⌋}{2} x=22m1。从中删除n个数后,与原先比,结果最多偏移n个。所以可以从 m a x ( 0 , x − n ) max(0, x-n) max(0,xn)开始考虑,找到符合条件的数即可。
设当前枚举的数为 p o s pos pos,则需要求出序列中剩下的比 p o s pos pos小的数的数量num。num等于pos-删除的序列中小于pos的数的数量。若 n u m = = ⌊ k − 1 ⌋ 2 num==\frac{⌊k−1⌋}{2} num==2k1 p o s pos pos即为所求。
(若pos被删除,则跳过)。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define dbg(x) cout<<#x<<" = "<
#define INF 0x3f3f3f3f
#define eps 1e-6
 
using namespace std;
typedef long long LL;   
typedef pair<int, int> P;
const int maxn = 120;
const int mod = 1000000007;
LL a[maxn];
char str[maxn];
bool isok(LL x, int n);

int main()
{
	int t, n, m, i, j;
	LL num, pos, k;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d %d", &n, &m);		
		for(i=0;i<n;i++){
			scanf(" %s", str);
			a[i] = 0;
			for(j=0;j<m;j++)
				a[i] = a[i]*2+str[j]-'0';
		}
		sort(a, a+n);
		pos = max(0LL, (1LL<<m)/2-120);
		while(isok(pos, n))
				pos++;
		k = ((1LL<<m)-n-1)/2;
		while(1){
			num = pos - (lower_bound(a, a+n, pos)-a);
			if(num == k)break;
			pos++;
			while(isok(pos, n))
				pos++;
		}
		for(i=m-1;i>=0;i--)
			if(pos&(1LL<<i))printf("1");
			else printf("0");
		printf("\n");
	}
	return 0;
}

bool isok(LL x, int n)
{
	int pos = lower_bound(a, a+n, x)-a;
	if(pos == n || a[pos] != x)return false;
	else return true;
}

你可能感兴趣的:(暴力)