STM32 的 SPI 特性及架构

STM32 的 SPI 外设可用作通讯的主机及从机,支持最高的 SCK 时钟频率为 fpclk/2(STM32F103 型号的芯片默认 fpclk1为 72MHz, fpclk2为 36MHz),完全支持 SPI 协议的 4 种模式,数据帧长度可设置为 8 位或 16 位,可设置数据 MSB 先行或 LSB 先行。它还支持双线全双工、双线单向以及单线模式。其中双线单向模式可以同时使用 MOSI 及 MISO 数据线向一个方向传输数据,可以加快一倍的传输速度。而单线模式则可以减少硬件接线,当然这样速率会受到影响。

STM32 的 SPI 架构剖析

STM32 的 SPI 特性及架构_第1张图片

1. 通讯引脚

SPI 的所有硬件架构都从图 25-5 中左侧 MOSI、 MISO、 SCK 及 NSS 线展开的。STM32 芯片有多个 SPI 外设,它们的 SPI 通讯信号引出到不同的 GPIO 引脚上,使用时必须配置到这些指定的引脚。
STM32 的 SPI 特性及架构_第2张图片
其中 SPI1 是 APB2 上的设备,最高通信速率达 36Mbtis/s, SPI2、 SPI3 是 APB1 上的设备,最高通信速率为 18Mbits/s。除了通讯速率, 在其它功能上没有差异。其中 SPI3 用到了下载接口的引脚,这几个引脚默认功能是下载,第二功能才是 IO 口,如果想使用 SPI3接口,则程序上必须先禁用掉这几个 IO 口的下载功能。一般在资源不是十分紧张的情况下,这几个 IO 口是专门用于下载和调试程序,不会复用为 SPI3。

2. 时钟控制逻辑

SCK 线的时钟信号,由波特率发生器根据“控制寄存器 CR1”中的 BR[0:2]位控制,该位是对 fpclk时钟的分频因子,对 fpclk的分频结果就是 SCK 引脚的输出时钟频率
STM32 的 SPI 特性及架构_第3张图片
其中的 fpclk频率是指 SPI 所在的 APB 总线频率, APB1 为 fpclk1, APB2 为 fpckl2。通过配置“控制寄存器 CR”的“CPOL 位”及“CPHA”位可以把 SPI 设置成前面分析的 4 种 SPI 模式。

3. 数据控制逻辑

SPI 的 MOSI 及 MISO 都连接到数据移位寄存器上,数据移位寄存器的数据来源及目标接收、发送缓冲区以及 MISO、 MOSI 线。当向外发送数据的时候,数据移位寄存器以“发送缓冲区”为数据源,把数据一位一位地通过数据线发送出去;当从外部接收数据的时候,数据移位寄存器把数据线采样到的数据一位一位地存储到“接收缓冲区”中。通过写 SPI的“数据寄存器 DR”把数据填充到发送 F 缓冲区中,通讯读“数据寄存器 DR”,取接收缓冲区中的内容。其中数据帧长度可以通过“控制寄存器 CR1”的“DFF 位”配置成 8 位及 16 位模式;配置“LSBFIRST 位”可选择 MSB 先行还是 LSB 先行。

4. 整体控制逻辑

整体控制逻辑负责协调整个 SPI 外设,控制逻辑的工作模式根据我们配置的“控制寄存器(CR1/CR2)”的参数而改变,基本的控制参数包括前面提到的 SPI 模式、波特率、 LSB先行、主从模式、单双向模式等等。在外设工作时,控制逻辑会根据外设的工作状态修改“状态寄存器(SR)”,我们只要读取状态寄存器相关的寄存器位,就可以了解 SPI 的工作状态了。除此之外,控制逻辑还根据要求,负责控制产生 SPI 中断信号、 DMA 请求及控制NSS 信号线。
实际应用中,我们一般不使用 STM32 SPI 外设的标准 NSS 信号线,而是更简单地使用
普通的 GPIO,软件控制它的电平输出,从而产生通讯起始和停止信号。

通讯过程

STM32 使用 SPI 外设通讯时,在通讯的不同阶段它会对“状态寄存器 SR”的不同数据位写入参数,我们通过读取这些寄存器标志来了解通讯状态。
图 25-6 中的是“主模式”流程,即 STM32 作为 SPI 通讯的主机端时的数据收发过程。
STM32 的 SPI 特性及架构_第4张图片
主模式收发流程及事件说明如下:
(1) 控制 NSS 信号线,产生起始信号(图中没有画出);
(2) 把要发送的数据写入到“数据寄存器 DR”中,该数据会被存储到发送缓冲区;
(3) 通讯开始, SCK 时钟开始运行。 MOSI 把发送缓冲区中的数据一位一位地传输出去; MISO 则把数据一位一位地存储进接收缓冲区中;
(4) 当发送完一帧数据的时候,“状态寄存器 SR”中的“TXE 标志位”会被置 1,表示传输完一帧,发送缓冲区已空;类似地,当接收完一帧数据的时候,“ RXNE标志位”会被置 1,表示传输完一帧,接收缓冲区非空;
(5) 等待到“TXE 标志位”为 1 时,若还要继续发送数据,则再次往“数据寄存器DR”写入数据即可;等待到“RXNE 标志位”为 1 时,通过读取“数据寄存器DR”可以获取接收缓冲区中的内容。假如我们使能了 TXE 或 RXNE 中断, TXE 或 RXNE 置 1 时会产生 SPI 中断信号,进入同一个中断服务函数,到 SPI 中断服务程序后,可通过检查寄存器位来了解是哪一个事件,再分别进行处理。也可以使用 DMA 方式来收发“数据寄存器 DR”中的数据。

你可能感兴趣的:(stm32,通讯协议)