求解模线性方程组(中国剩余定理)

求解模线性方程组(中国剩余定理)
  x=a1 mod m1
  x=a2 mod m2
  ......
  x=an mod mn  其中,a[],m[]已知,m[i]>0且m[i]与m[j]互质,求x.
普通的中国剩余定理要求所有的m是互素
有整数解。并且在模下的解是唯一的,解为
int CRT(int a[],int m[],int n)
{
    int M = 1;
    int ans = 0;
    for(int i=1; i<=n; i++)
        M *= m[i];
    for(int i=1; i<=n; i++)
    {
        int x, y;
        int Mi = M / m[i];
        extend_Euclid(Mi, m[i], x, y);
        ans = (ans + Mi * x * a[i]) % M;
    }
    if(ans < 0) ans += M;
    return ans;
}
人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一
天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日
期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少
再过多少天后三个峰值同时出现。
0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1
Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

#include
#include
#include

using namespace std;

int a[4], m[4];

void extend_Euclid(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return;
    }
    extend_Euclid(b, a % b, x, y);
    int tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}

int CRT(int a[],int m[],int n)
{
    int M = 1;
    int ans = 0;
    for(int i=1; i<=n; i++)
        M *= m[i];
    for(int i=1; i<=n; i++)
    {
        int x, y;
        int Mi = M / m[i];
        extend_Euclid(Mi, m[i], x, y);
        ans = (ans + Mi * x * a[i]) % M;
    }
    if(ans < 0) ans += M;
    return ans;
}

int main()
{
    int p, e, i, d, t = 1;
    while(cin>>p>>e>>i>>d)
    {
        if(p == -1 && e == -1 && i == -1 && d == -1)
            break;
        a[1] = p;
        a[2] = e;
        a[3] = i;
        m[1] = 23;
        m[2] = 28;
        m[3] = 33;
        int ans = CRT(a, m, 3);
        if(ans <= d)
            ans += 21252;
        cout<<"Case "<     }
    return 0;
}

不互素?
input:
2
8 7
11 9
output:
31
#include
#include
#include

using namespace std;
typedef long long LL;
const int N = 1005;

LL a[N], m[N];

LL gcd(LL a,LL b)
{
    return b? gcd(b, a % b) : a;
}

void extend_Euclid(LL a, LL b, LL &x, LL &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return;
    }
    extend_Euclid(b, a % b, x, y);
    LL tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}

LL Inv(LL a, LL b)
{
    LL d = gcd(a, b);
    if(d != 1) return -1;
    LL x, y;
    extend_Euclid(a, b, x, y);
    return (x % b + b) % b;
}

bool merge(LL a1, LL m1, LL a2, LL m2, LL &a3, LL &m3)
{
    LL d = gcd(m1, m2);
    LL c = a2 - a1;
    if(c % d) return false;
    c = (c % m2 + m2) % m2;
    m1 /= d;
    m2 /= d;
    c /= d;
    c *= Inv(m1, m2);
    c %= m2;
    c *= m1 * d;
    c += a1;
    m3 = m1 * m2 * d;
    a3 = (c % m3 + m3) % m3;
    return true;
}

LL CRT(LL a[], LL m[], int n)
{
    LL a1 = a[1];
    LL m1 = m[1];
    for(int i=2; i<=n; i++)
    {
        LL a2 = a[i];
        LL m2 = m[i];
        LL m3, a3;
        if(!merge(a1, m1, a2, m2, a3, m3))
            return -1;
        a1 = a3;
        m1 = m3;
    }
    return (a1 % m1 + m1) % m1;
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1; i<=n; i++)
            scanf("%I64d%I64d",&m[i], &a[i]);
        LL ans = CRT(a, m, n);
        printf("%I64d\n",ans);
    }
    return 0;
}

设m1,m2,...,mn是两两互素的正数,则对任意的整数a1,a2,...,an,同余方程组
其解为:X=((M_1*M1*a1)+(M_2*M2*a2)+...+(M_n*Mn*an)) mod m;
其中m=m1*m2*...*mn;  Mi=m/mi; M_i是Mi的逆元
int china(int *a,int *m,int n)
{
   int M=1,ans=0,mi,i,x,y;
   for(i=0;i    for(i=0;i    {
       mi=M/m[i];
       exgcd(m[i],mi,x,y);
       ans=(ans+mi*y*a[i])%M;
   }
   return (ans%M+M)%M;
}
 

你可能感兴趣的:(ACM)