84. Largest Rectangle in Histogram (JAVA)

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

 


Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3].

 

思路:用动态规划。

法I:首先想到用两个数组,分别存储向左最大延伸位置以及向右最大延伸位置,这种方法要遍历两边,且空间复杂度O(n)+O(n)

法II:用stack的栈顶元素指示所要计算的height,左界是栈顶第二个元素+1位置(因为只有栈顶永远是栈中高度最高的元素),右界是当前元素-1位置(当前元素比栈顶元素低的情况下)。当当前元素高度>= 栈顶元素高度,入栈,i++;当当前元素高度<栈顶元素高度,出栈,计算当前面积,i不增加。

class Solution {
    public int largestRectangleArea(int[] heights) {
        Stack st = new Stack(); 
        if(heights.length == 0) return 0;
        
        int leftIndex;
        int topIndex;
        int area;
        int maxArea = 0; 
        int i = 0;
        while(i < heights.length){
            if(st.empty() || heights[i] >= heights[st.peek()]){
                st.push(i);
                i++;
            }
            else{
                topIndex = st.peek();
                st.pop();
                leftIndex = st.empty()?0:st.peek()+1; //如果是空,说明从头开始的所有高度都比heights[topIndex]高
                area = ((i-1)-leftIndex + 1) * heights[topIndex];
                if(area > maxArea) maxArea = area;
            }
        }
        while(!st.empty()){ //没有比栈顶元素小的元素让它出栈
            topIndex = st.peek();
            st.pop();
            leftIndex = st.empty()?0:st.peek()+1; 
            area = ((i-1)-leftIndex + 1) * heights[topIndex];
            if(area > maxArea) maxArea = area;
        }
        return maxArea;
    }
}

 

转载于:https://www.cnblogs.com/qionglouyuyu/p/10938902.html

你可能感兴趣的:(84. Largest Rectangle in Histogram (JAVA))