http://www.lydsy.com/JudgeOnline/problem.php?id=4636
DCrusher贡献的题目
看了他的博客,有两种做法,动态开点线段树和离线操作离散化区间线段树,都是标记永久化,最后统一下放标记算出答案。
动态开点线段树速度更快,但是今天李佳蔚讲了stl的用法,包括用unique和lower_bound离散化,所以这道题就用离散化写了_(:з」∠)_
学习了新的离散化方式(较之前我用id域来离散化,这种二分查找离散化方式常数大一点但代码量少很多)
#include
#include
#include
using namespace std;
typedef long long ll;
const int N = 400003;
int in() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 3) + (k << 1) + c - '0';
return k * fh;
}
struct node{int l, r, k;} q[N];
int lazy[N << 2], sum[N], n;
int L, R, num;
void update(int rt, int l, int r) {
if (L <= l && r <= R) {
lazy[rt] = max(lazy[rt], num);
return;
}
int mid = (l + r) >> 1;
if (L <= mid) update(rt << 1, l, mid);
if (R > mid) update(rt << 1 | 1, mid + 1, r);
}
ll Q(int rt, int l, int r) {
if (l == r) return 1ll * lazy[rt] * sum[l];
int mid = (l + r) >> 1;
lazy[rt << 1] = max(lazy[rt << 1], lazy[rt]);
lazy[rt << 1 | 1] = max(lazy[rt << 1 | 1], lazy[rt]);
return Q(rt << 1, l, mid) + Q(rt << 1 | 1, mid + 1, r);
}
int H[N << 1];
int main() {
int t = in(), tot = 0;
for(int i = 1; i <= t; ++i) {
q[i].l = in();
q[i].r = in();
q[i].k = in();
H[++tot] = q[i].l;
H[++tot] = q[i].r;
}
sort(H + 1, H + tot + 1);
tot = unique(H + 1, H + tot + 1) - H;
n = tot - 2;
for(int i = 1; i <= n; ++i)
sum[i] = H[i + 1] - H[i];
for(int i = 1; i <= t; ++i) {
q[i].l = lower_bound(H + 1, H + tot, q[i].l) - H;
q[i].r = lower_bound(H + 1, H + tot, q[i].r) - H;
}
for(int i = 1; i <= t; ++i) {
L = q[i].l; R = q[i].r - 1; num = q[i].k;
update(1, 1, n);
}
printf("%lld\n", Q(1, 1, n));
return 0;
}
还有一定注意区间要设为左闭右开!否则找离散后的区间就不太容易了QAQ