F l o y d Floyd Floyd是基于 D P DP DP思想。
设 k k k为中转点,与 i i i, j j j都有边相连。
那么可以得到 d i s [ i ] [ j ] dis[i][j] dis[i][j]的最短路径的状态转移方程为:
d i s [ k , i , j ] = m i n ( d i s [ k − 1 , i , j ] , d i s [ k − 1 , i , k ] + d i s [ k − 1 , k , j ] dis[k,i,j]=min(dis[k-1,i,j], dis[k-1,i,k]+dis[k-1,k,j] dis[k,i,j]=min(dis[k−1,i,j],dis[k−1,i,k]+dis[k−1,k,j]
memset(dis, 0x3f, sizeof(dis));
memset(pre, 0, sizeof(pre));
pre[u][v] = u;
void Floyd() {
for(int k = 1;k <= n; k++) {
for(int i = 1;i <= n; i++) {
for(int j = 1;j <= n; j++) {
if(dis[i][j] > dis[i][k] + dis[k][j]) {
dis[i][j] = dis[i][k] + dis[k][j];
pre[i][j] = pre[k][j];//输出路径
}
}
}
}
}
void print(int x) {
if(pre[s][x] == 0) {
printf("%d ", s);
return ;
}
print(pre[s][x]);
printf("%d ", x);
}
D i j k s t r a Dijkstra Dijkstra使用贪心思想,求最短路的步骤如下:
1.初始化:把 d i s [ ] dis[] dis[]置为∞, v [ ] v[] v[]置为0表示还没有访问过。
2.循环遍历与当前节点相邻的节点,找出最短的距离。
3.用找出的最短距离更新剩下的节点。
void Dijkstra(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(v, 0, sizeof(v));
v[s] = 1;
for(int i = 1;i < n; i++) {
int k = 0;
for(int j = 1;j <= n; j++) {
if(! v[j] && (k == 0 || dis[j] < dis[k])) k = j;
}
v[k] = 1;
for(int j = 1;j <= n; j++) {
if(dis[k] + w[k][j] < dis[j]) {
dis[j] = dis[k] + w[k][j];
pre[j] = k;
}
}
}
}
void print(int x) {
if(pre[x] == 0) {
printf("%d ", x);
return ;
}
print(pre[x]);
printf("%d ", x);
}
struct edge {
int v, w;
edge(){}
edge(int V, int W) {
v = V;
W = W;
}
};
void DijkstraAdl(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(v, 0, sizeof(v));
dis[s] = 0;
for(int i = 1;i <= n; i++) {
int u, v, w;
for(int j = 1;j <= n; j++) {
if(! v[i] && dis[i] < dis[u]) u = i;
}
v[u] = 1;
for(int j = 0;j < G[u].size(); j++) {
v = G[u][j].v, w = G[u][j].w;
if(dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
pre[v] = u;
}
}
}
}
#include
#include
#include
#include
#include
#include
using namespace std;
const int MAXN = 2505;
int n, m, s, t;
bool vis[MAXN];
int dis[MAXN];
struct edge {
int v, w;
edge() {}
edge(int V, int W) {
v = V;
w = W;
}
};
struct node {
int u, dis;
node() {}
node(int U, int D) {
u = U;
dis = D;
}
friend bool operator<(node x, node y) { return x.dis > y.dis; }
};
priority_queue<node> q;
vector<edge> G[MAXN];
void AddEdge(int u, int v, int w) {
G[u].push_back(edge(v, w));
G[v].push_back(edge(u, w));
}
void Dijkstra(int s, int t) {
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f, sizeof(dis));
dis[s] = 0;
q.push(node(s, 0));
while (q.size()) {
int now = q.top().u;
q.pop();
if (vis[now])
continue;
vis[now] = 1;
for (int i = 0; i < G[now].size(); i++) {
int v = G[now][i].v;
if (dis[v] > dis[now] + G[now][i].w) {
dis[v] = dis[now] + G[now][i].w;
q.push(node(v, dis[v]));
}
}
}
}
int main() {
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
AddEdge(u, v, w);
}
Dijkstra(s, t);
printf("%d\n", dis[t]);
return 0;
}