- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 有负环的费用流问题:用消消乐“白嫖”的艺术
牛马程序员_江
phplinux开发语言.net
有负环的费用流问题:用消消乐“白嫖”的艺术前文回顾:https://www.cnblogs.com/ofnoname/p/18731222想象你是一家快递公司的调度员,每天的任务是将货物从仓库高效送到客户。你设计了一条完美路线:每辆卡车都走最短路径,运费最省,按时送达——直到有一天,某个司机突然上报了一个诡异的现象:“老板,我的卡车在某个路口绕圈转了10次,运费反而比直送更便宜!”你眉头一皱,打开
- 二叉树--路径
通凡
数据结构二叉树操作二叉树存储路径
二叉树中,从根节点到叶节点的每一条连接,我们称之为路径,最短路径和最长路径在之前的博客中,我们已经完成了对他们的讨论,现在我们讨论一下,输出一棵二叉树中全部的路径信息。代码如下所示:publicclassOperation{Listresult=newLinkedList();//存储最后的结果publicListbinaryTreePaths(TreeNoderoot){if(root==nul
- 数据结构------最短路弗洛伊德算法(Flody)
不羁修士
数据结构c++图论数据结构图搜索算法动态规划
目录前言一、Foldy代码核心介绍二、Flody代码详解:三、所有代码:四、Foldy算法分析:总结前言如果你要求所有顶点至所有顶点的最短路径问题时,弗洛伊德算法是非常不错的选择。因为它十分简洁。一、Foldy代码核心介绍(1)两个二维数组D[v][w]和P[v][w],分别存最短距离和最短路径。(2)D[v][w]=min(D[v,w],D[v][k]+D[k][w])二、Flody代码详解:/
- 路由协议有哪些?
你的四舅老爷
路由协议网络网络协议p2p
1、RIP协议-路由信息协议,属于最早的动态路由协议优点:节约成本,对资源消耗较低,配置简单,对硬件要求低,占用CPU、内存低,所以在小型网络中还有使用到。缺点:计算路由慢,链路变化了收敛慢,能够保存的路由表相对较小,最多只能支持15台设备的网络,只适用于小型网络2、OSPF协议-开放最短路径优先协议,企业网主要使用的协议优点:技术成熟,碰到的问题基本上在资料上都能够查到,收敛快,由于cisco的
- 计算机网络之路由协议(自治系统)
DKPT
#计算机网络计算机网络开发语言算法笔记学习
一、自治系统(AS)自治系统是由同一个技术管理机构管理、使用统一选路策略的一些路由器的集合。它是网络的基本构成单位,每个自治系统是一个独立运营并自主决定与谁交换流量的实体。自治系统内部运行内部网关协议(IGP),而自治系统之间则运行外部网关协议(EGP)。二、路由协议内部网关协议(IGP):在一个自治系统内部使用的路由选择协议。主要协议包括:RIP(路由信息协议)、OSPF(开放最短路径优先协议)
- 算法|图论|BFS和DFS
锅巴xx
算法算法图论宽度优先c++笔记学习
图论|BFS和DFS1.BFS2.DFS心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。BFSBFS广度优先搜索BFS(Breadth-First-Search),是一种遍历算法,也是很多重要的图的算法的原型(如:Dijstra单源最短路径算法和Prim最小生成树算法)。属于一种盲目搜寻法,目的是系统地展开并检查图中
- 最短路径算法(算法篇)
Moon2144
数据结构与算法算法图论
算法之最短路径算法最短路径算法概念:考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。在赋权图,可能会出现负值边的情况,这样当我们去找最短路径时,可能会产生负值圈,毕竟一直走负值边可以将数值变得更短。单源最短路径问题:给定一个赋权图G=(V,E)和一个特定顶点s作为输入,找出
- 图论 之 BFS
JNU freshman
算法蓝桥杯图论宽度优先算法蓝桥杯
文章目录3243.新增道路查询后的最短距离1311.获取你好友已观看的视频BFS:广度优先搜索(BFS)是一种常用的算法,通常用于解决图或树的遍历问题,尤其是寻找最短路径或层级遍历的场景。BFS的核心思想是使用队列(FIFO数据结构)来逐层遍历节点。模版fromcollectionsimportdeque#graphdefbfs(start):#初始化队列,并将起始节点加入队列queue=dequ
- 图论 之 弗洛伊德算法求解全源最短路径
JNU freshman
算法蓝桥杯图论算法
文章目录题目1334.阈值距离内邻居最少的城市Floyd算法适合用于求解多源的最短路径的问题,相比之下,Dijkstra算法适合用于求解单源的最短路径的问题,并且,当边的权值只有1的时候,我们还能使用BFS求解最短路径的问题图论之BFS图论之迪斯科特拉算法求解最短路径灵神讲解Floyd算法可以从递归中得到,相对应的,我们也有使用记忆化搜索和动态规划进行求解递归方式的模版@cachedefdfs(k
- 深入剖析 C++ 中的迪杰斯特拉算法
小白布莱克
c++算法开发语言
在图论算法的领域中,迪杰斯特拉(Dijkstra)算法是一颗璀璨的明星,它在解决单源最短路径问题上发挥着关键作用。对于学习C++编程的开发者来说,掌握迪杰斯特拉算法不仅能加深对算法思维的理解,还能在实际项目中有效解决诸多路径规划相关问题。迪杰斯特拉算法原理迪杰斯特拉算法是一种贪心算法,用于计算一个节点到图中其他所有节点的最短路径。它的核心思想是:从源节点出发,每次从未确定最短路径的节点中选择距离源
- 华为动态路由-OSPF-完全末梢区域
小冷爱学习!
网络通信华为服务器网络
华为动态路由-OSPF-完全末梢区域一、OSPF简介1、OSPF概述OSPF是一种开放式的、基于链路状态的内部网关协议(IGP),用于在自治系统内部进行路由选择和通信。OSPF是互联网工程任务组(IETF)定义的标准之一,被广泛应用于企业网络和互联网中。OSPF使用Dijkstra算法计算最短路径,并维护一个基于链路状态的路由数据库,以选择最佳路径2、OSPF特点开放性(Open):OSPF是一种
- 深入解析BFS算法:C++实现无权图最短路径的高效解决方案
Exhausted、
算法c++算法开发语言宽度优先数据结构
在无权图中,广度优先搜索(BFS)是解决最短路径问题的高效算法。接下来博主从专业角度深入探讨其实现细节,并给出C++代码示例:目录一、核心原理二、算法步骤三、C++实现关键点1.数据结构2.边界检查3.路径回溯(可选)四、代码实现五、路径回溯实现六、复杂度分析七、适用场景与限制一、核心原理BFS按层遍历节点,确保首次到达目标节点的路径是最短的。其核心特性为:队列管理:先进先出(FIFO)保证按层扩
- OSPF基础知识总结
Rebesa
智能路由器网络网络协议网络安全
基本概念协议类型:链路状态型IGP(内部网关协议),基于Dijkstra算法计算最短路径树。协议号:IP层协议,协议号89。特点:支持分层设计(区域划分)、快速收敛、无环路、支持VLSM/CIDR。区域(Area)骨干区域(BackboneArea):Area0,所有非骨干区域必须直接或通过虚链路连接到Area0。区域边界路由器(ABR):连接不同区域的路由器,汇总区域间路由。自治系统边界路由器(
- 【C++第二十章】红黑树
A.A呐
C++c++开发语言
【C++第二十章】红黑树红黑树介绍红黑树是一种自平衡的二叉搜索树,通过颜色标记和特定规则保持树的平衡性,从而在动态插入、删除等操作中维持较高的效率。它的最长路径不会超过最短路径的两倍,它的查找效率比AVL树更慢(对于CPU来说可以忽略不计),但是它不会像AVL树那样花费更大的代价去实现严格平衡(旋转)。1.红黑树与AVL树特性红黑树AVL树平衡标准通过颜色规则约束,允许一定不平衡严格平衡(左右子树
- 【深度解析】最短路径算法:Dijkstra与Floyd-Warshall
吴师兄大模型
算法数据结构python最短路径算法Dijkstra算法Floyd-Warshall开发语言
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- 13-二叉树最小深度-深度优先(DFS)
最遥远的瞬间
算法合集深度优先算法
一、定义什么是二叉树的最小深度?二叉树的最小深度是指从根节点到最近的叶子节点的最短路径上的节点数。叶子节点是指没有子节点的节点。举个例子:1/\23/4这棵树的最小深度是2,因为从根节点1到叶子节点3的路径最短,只需要经过1和3两个节点。深度优先搜索(DFS)的思路深度优先搜索是一种遍历树的方法,它的特点是一条路走到底,直到遇到叶子节点或者无法继续前进时,再回溯到上一个节点,尝试其他路径。用DFS
- js根据两个经纬度点计算文字显示角度
钱端工程师
javascript
主要用到Turf.js库中的一个方法:rhumbBearing。用于计算两点之间的罗盘方位角(也称为恒向线角或罗盘角)。这种方法假设地球是一个球体,并且沿着最短路径(即大圆路径)测量两点之间的距离和方位角,但在计算方位角时采用了一种简化的方法,即假设沿恒向线(罗盘线)航行。1.安装Turf.js://在项目目录的命令行中输入:npminstall@turf/turf2.使用:import{rhum
- 图论- Dijkstra算法
左灯右行的爱情
图论算法python
Dijkstra算法前言概念BFS基础模版DijkstraDijkstra函数签名State类distTo记录最短路径伪代码模版第一个问题解答第二个问题解答第三个问题解答前言学习这个算法之间,必须要对BFS遍历比较熟悉,它的本质就是一个特殊改造过的BFS算法.概念Dijkstra算法是一种计算图中单源最短路径算法,本质上是一个经过特殊改造的BFS算法,改造点有两个:使用优先队列,而不是普通队列进行
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- leetcode_二叉树 111. 二叉树的最小深度
MiyamiKK57
leetcode算法深度优先
111.二叉树的最小深度给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。1.深度遍历DFS(递归)#Definitionforabinarytreenode.#classTreeNode(object):#def__init__(self,val=0,left=None,right=None):#self.val=val#
- 数据结构-图(二)
大明湖的狗凯.
数据结构数据结构算法
文章目录图的基本应用:深入解析与实践一、引言二、最小(代价)生成树(一)概念与性质(二)算法实现三、最短路径(一)概念与分类(二)单源最短路径算法(三)多源最短路径算法-Floyd-Warshall算法图的基本应用:深入解析与实践一、引言图作为一种强大的数据结构,在众多领域有着广泛而重要的应用。从计算机网络到项目管理,从交通规划到电路设计,图的相关算法和概念都发挥着关键作用。本文将详细探讨图的几个
- 洛谷--P4779 【模板】单源最短路径(标准版)
Ustinian.'
数据结构贪心算法算法
单源最短路径题目来源一、基础dijkstra二、堆优化的dijkstra题目来源洛谷–P4779【模板】单源最短路径(标准版)一、基础dijkstra基本思路:1.定义ans[100000],ans[i]代表到达i点的最小花费2.定义bool数组visit,代表是否来过这里2.ans[起点]=0,其余的赋值为inf3.定义一个curr变量,visit[current]=1(访问过),代表现在的位置
- 【洛谷】P4779 单源最短路径(标准版+弱化版) Dijkstra堆优化
追风者_
最短路径队列洛谷
题目背景2018年7月19日,某位同学在NOIDay1T1归程一题里非常熟练地使用了一个广为人知的算法求最短路。然后呢?100\rightarrow60100→60;\text{Ag}\rightarrow\text{Cu}Ag→Cu;最终,他因此没能与理想的大学达成契约。小F衷心祝愿大家不再重蹈覆辙。题目描述给定一个nn个点,mm条有向边的带非负权图,请你计算从ss出发,到每个点的距离。数据保证
- 洛谷[P4779]单源最短路径(标准版)
Shadow_of_the_sun
c++
前言SPFASPFA算法由于它上限O(NM)=O(VE)O(NM)=O(VE)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:dijkstradijkstra.什么是dijkstradijkstra?dijkstradijkstra是一种单源最短路径算法,时间复杂度上限为O(n^2)O(n2)(朴素),在实际应用中较为稳定;;加上堆优化之后更是具有O((n+m)\log_{
- 每日一知识:图的遍历算法(bfs+dfs),javascript实现
程序猿阿嘴
前端javascript每日一知识算法深度优先宽度优先
什么是图?在计算机中,图结构也是一种非常常见的数据结构。图论也是一个非常大的话题图结构是一种与树结构有些相似的数据结构。图论是数学的一个分支,并且,在数学的概念上,树是图的一种。图主要研究的目的是事物之间的关系,顶点代表事物,边代表两个事物间的关系。图在生活中的应用场景:人与人之间的关系(比如六度空间理论),地点之间的联系图(地图App,就是通过图来计算最短路径或最优路径)图的特点一组顶点:通常用
- 2.9学习总结
张张张312
学习
最短路径(dijkstra算法)单源点最短路径什么叫单源点最短路径?单源点指的就是单一的起始点,那么单源点最短路径指的就是,从单一起始点到其余顶点的最短路径。网图与非网图的单源点最短路径对于非网图而言,最短路径表示的是由起始点到终点需要经过的最少路径条数对于网图而言,最短路径表示的是由起始点到终点,所需花费的最少代价,也就是路径权值总和最小模板代码初始化:1.1初始化dist[i]数组1.2根据d
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found