Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂

介绍BucketCache前,先对HBase的Cache做个介绍: 
一.HBase在读取时,会以Block为单位进行cache,用来提升读的性能; 


二.Block可以分类为DataBlock(默认大小64K,存储KV)、BloomBlock(默认大小128K,存储BloomFilter数据)、IndexBlock(默认大小128K,索引数据,用来加快Row所在DataBlock的定位) 




三.对于一次随机读,Block的访问顺序为BloomBlock、IndexBlock、DataBlock,如果Region下面的StoreFile数目为2个,那么一次随机读至少访问2次BloomBlock+1次IndexBlock+1次DataBlock 


四.我们通常将BloomBlock和IndexBlock统称为MetaBlock,MetaBlock线上系统中基本命中率都是100% 


五.Block的cache命中率对HBase的读性能影响十分大,所以DataBlockEncoding将KV在内存中进行压缩,对于单行多列和Row相似的场景,可以提高内存使用率,增加读性能 


六.HBase中管理缓存的Block的类为BlockCache,其实现目前主要是下面三种: 



6.1 LruBlockCache,默认的BlockCache实现,也是目前使用的BlockCache,使用一个HashMap维护Block Key到Block的映射,采用严格的LRU算法来淘汰Block,初始化时会指定容量大小,当使用量达到85%的时候开始淘汰block至75%的比例。 
优点:直接采用jvm提供的HashMap来管理Cache,简单可依赖;内存用多少占多少,JVM会帮你回收淘汰的BlOCK占用的内存 
缺点: 
1.一个Block从被缓存至被淘汰,基本就伴随着Heap中的位置从New区晋升到Old区 
2.晋升在Old区的Block被淘汰后,最终由CMS进行垃圾回收,随之带来的是Heap碎片 
3.因为碎片问题,随之而来的是GC时晋升失败的FullGC,我们的线上系统根据不同的业务特点,因为这个而发生FullGC的频率,有1天的,1周的,1月半年的都有。对于高频率的, 

在运维上通过在半夜手工触发FullGC来缓解 
4.如果缓存的速度比淘汰的速度快,很不幸,现在的代码有OOM的风险(这个可以修改下代码避免) 



6.2 SlabCache,针对LruBlockCache的碎片问题一种解决方案,使用堆外内存,处于实验性质,真实测试后,我们定位为不可用。说下它的原理:它由多个SingleSizeCache组成(所谓SingleSizeCache,就是只缓存固定大小的block,其内部维护一个ByteBuffer List,每个ByteBuffer的空间都是一样的,比如64K的SingleSizeCache,ByteBuffer的空间都是64K,cache Block时把Block的内容复制到ByteBuffer中,所以block的大小必须小于等于64K才能被这个SingleSizeCache缓存;淘汰block的时候只需要将相应的ByteBuffer标记为 

空闲,下次cache的时候对其上的内存直接进行覆盖就行了),cache Block的时候,选择一个小于且最接近的SingleSizeCache进行缓存,淘汰block亦此。由于SingleSize的局限性,其使用上和LruBlockCache搭配使用,叫做DoubleBlockCache,cache block的时候LruBlockCache和SlabCache都缓存一份,get block的时候顺序为LruBlockCache、SlabCache,如果只有SlabCache命中,那么再将block缓存到LruBlockCache中(本人觉得它的这个设计很费,你觉得呢) 

优点:其思想:申请固定内存空间,Block的读写都在这片区域中进行 
缺点: 
1.cache block和 get block的时候,需要内存复制 
2.SingleSizeCache的设计,导致内存使用率很低 
3.与LruBlockCache搭配使用不合理,导致所有的block都会去LruBlockCache中逗留一下,结果是CMS和碎片都不能有所改善 


6.3 BucketCache,可以看成是对SlabCache思想在实现上的一种改进及功能扩展,其优点是解决LruBlockCache的缺点及支持面向高性能读的大缓存空间. 



1.何谓大缓存?缓存Block的存储介质不再仅仅依赖在内存上,而是可以选择为Fusion-io、SSD等高速磁盘,我们称之为二级缓存 



2.何谓Bucket?我们将缓存空间划分为一个个的Bucket,每个Bucket都贴上一个size标签,将Block缓存在最接近且小于size的bucket中(和SingleSizeCache很相似) 



3.怎么解决CMS 碎片问题?Block存储在Bucket中,而每个Bucket的物理存储是不变的,也就是说系统刚启动的时候,我们就申请了一堆Bucket内存空间,而这些内存空间是一直在Old区,block的Get/Cache动作只是对这片空间的访问/覆写,CMS/碎片自然大大减少 



4.怎么使用?上面的描述指出BucketCache可以有两种用法: 
4.1 与LruBlockCache搭配,作为主要的内存cache方案使用 



Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第1张图片
 


4.2 作为二级缓存使用,将Block缓存在我们的高速盘(Fusion-IO)中 



Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第2张图片
 


5.BucketCache中的Cache/Get Block逻辑? 


Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第3张图片
 


Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第4张图片
 



简单地描述下: 
CacheBlock的时候,将Block放在一个RAMMap和一个Queue中,然后WriterThread异步从Queue中remove Block写入到IOEngine(内存或高速盘)中,并将BlockKey及其位置、长度等信息记录在backingMap 
GetBlock的时候,先访问RAMMap,然后访问backingMap获取block的位置及长度,从IOEngine读取数据 


6.Block在IOEngine中的位置是怎么分配的? 



Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第5张图片
 


我们将物理空间划分为一堆等大的Bucket,每一个Bucket有一个序号及一个size标签,于是Block所在bucket的序号及其在bucket中的offset与block在物理空间的offset就形成了一一对应。我们通过BucketAllocator为指定大小的Block寻找一个Bucket进行存放,于是就得到了其在物理空间上的位置。 



上图描述了BucketAllocator对于Bucket的组织管理: 

6.1 每个Bucket都有一个size标签,目前对于size的分类,是在启动时候就确定了,如默认的有(8+1)K、(16+1)K、(32+1)K、(40+1)K、(48+1)K、(56+1)K、(64+1)K、(96+1)K ... (512+1)K 


6.2 相同size标签的Bucket由同一个BucketSizeInfo管理 


6.3 Bucket的size标签可以动态调整,比如64K的block数目比较多,65K的bucket被用完了以后,其他size标签的完全空闲的bucket可以转换成为65K的bucket,但是至少保留一个该size的bucket 




6.4 如果最大size的bucket为513K,那么超过这个大小的block无法存储,直接拒绝 


6.5 如果某个size的bucket用完了,那么会依照LRU算法触发block淘汰 



问题: 

6.6.如果系统一开始都是某个size的block,突然变成另外个size的block(不能存在同个size的bucket中),根据6.5不是会不停地进行淘汰算法? 
是的,但是由于淘汰是异步的,影响不大,而且随着淘汰进行,bucket的大小会逐渐向那个block size大小bucket转移,最终稳定 



6.7 BucketAllocator中allocate block的流程? 


Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第6张图片
 




Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第7张图片
 



6.8 BucketAllocator中free block的流程? 


Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第8张图片
 


6.9 第一种使用的测试结果 


Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第9张图片
 


6.10 第二种使用的测试结果 



Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂_第10张图片
 


6.11 更多细节,尽在代码中 

https://issues.apache.org/jira/browse/HBASE-7404 

 

你可能感兴趣的:(基础知识)