实现有向图的拓扑排序和关键路径计算。在此基础上,借助OpenCV将图及其关键路径画出来。函数CriticalPath() -> 源文件CriticalPath.cpp*/
下面将代码贴出 里面有详细的注释
input.txt的内容
1 2 5
1 3 7
2 4 3
3 4 6
3 5 3
4 5 4
4 6 4
4 7 4
5 7 2
6 9 4
7 9 5
5 8 5
8 9 2
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
Mat P(800, 800, CV_8UC3, Scalar(255, 255, 255));
#define Max 999
#define MAX_NUM 10 //顶点最多个数
int ve[MAX_NUM] = { 0 };//事件最早发生时间
int vl[MAX_NUM] = { Max };//事件最迟发生时间
int a[50], b[50], c[50];//初始化时用的初始点 终点 权值
typedef struct _Graph
{
int matrix[MAX_NUM][MAX_NUM]; //邻接矩阵
int vexnum; //顶点个数
int arcs; //弧的个数
}Graph;
struct datas//点的颜色
{
int r, g, b;
}color[11];
struct location//点的位置
{
int x, y;
}local[11];
void startdata();//颜色 坐标初始值
void CreateGraph(Graph &g);//图的建造
void FindInDegree(Graph g, int in[]);//查找入度为0的顶点
void TopologicalSort(Graph g, stack &s);//拓扑排序
void CriticalPath(Graph g);//关键路径
int main()
{
Graph graph; int i;
CreateGraph(graph);
startdata();
for (i = 0; i < 13; i++)//打印原始的点
{
Point s;
circle(P, Point(local[a[i]].x, local[a[i]].y), 40, Scalar(color[a[i]].r, color[a[i]].g, color[a[i]].b), -1);
circle(P, Point(local[b[i]].x, local[b[i]].y), 40, Scalar(color[b[i]].r, color[b[i]].g, color[b[i]].b), -1);
line(P, Point(local[a[i]].x, local[a[i]].y), Point(local[b[i]].x, local[b[i]].y), Scalar(0, 0, 0), 5, CV_AA);
imshow("out", P);
waitKey(20);
}
CriticalPath(graph);
waitKey(10000);
}
void startdata()//颜色 坐标初始值
{
int i;
for (i = 1; i < 11; i++)
{
color[i].r = rand() % 255;
color[i].b = rand() % 255;
color[i].g = rand() % 255;
}
local[1].x = 80; local[1].y = 300; local[2].x = 150; local[2].y = 100; local[3].x = 150; local[3].y = 500; local[4].x = 300; local[4].y = 100;
local[5].x = 300; local[5].y = 500; local[6].x = 500; local[6].y = 100; local[7].x = 350; local[7].y = 300; local[8].x = 600; local[8].y = 500;
local[9].x = 700; local[9].y = 300;
}
void CreateGraph(Graph &g)//图的建造
{
FILE *fp; int cost[15][15];
fopen_s(&fp, "input.txt", "r");
int i = 0, sum = 0;
while (!feof(fp))
{
fscanf_s(fp, "%d %d %d\n", &a[i], &b[i],&c[i]);
i++; sum++;
}
fclose(fp);
g.vexnum = 9;
for (int i = 0; i <= g.vexnum; i++)
{
for (int j = 0; j <= g.vexnum; j++)
{
g.matrix[i][j] = Max;
}
}
g.arcs = sum;
for (int i = 0; i < g.arcs; i++)
{
g.matrix[a[i]][b[i]] = c[i];//权值
}
}
void FindInDegree(Graph g, int in[])//查找入度为0的顶点
{
for (int i = 1; i <= g.vexnum; i++)
{
for (int j = 1; j <= g.vexnum; j++)
{
if (g.matrix[i][j] != Max)
{
in[j]++;
}
}
}
}
void TopologicalSort(Graph g, stack &s)//拓扑排序,并寻找事件最早发生时间 堆栈s存储拓扑排序的顺序
{
int in[MAX_NUM] = { 0 };
FindInDegree(g, in);
queue q;//定义一个队列q
int i;
for (i=1; i <= g.vexnum; i++)
{
if (in[i] == 0)
{
q.push(i);//入队
}
}
int count = 0;
while (!q.empty())
{
i = q.front();//查看队列的第一个元素
s.push(i);//堆栈入栈
q.pop();//弹出队列最后一个元素
count++;
for (int j = 1; j <= g.vexnum; j++)
{
if (g.matrix[i][j] != Max)//如果该节点到其他节点有路
{
if (!(--in[j]))//如果某一节点去掉一条边后入度为0
{
q.push(j);//入队
}
if (ve[i] + g.matrix[i][j] > ve[j])//如果该入度为0的节点通往其他节点的权值大于某一节点的最早发生时间(权值)就更新他们的最早发生时间
{
ve[j] = ve[i] + g.matrix[i][j];
}
}
}
}
}
void CriticalPath(Graph g)//关键路径
{
stack s;//定义一个堆栈
TopologicalSort(g, s);//拓扑排序
for (int i = 1; i <= g.vexnum; i++)//初始化事件最迟发生时间
{
vl[i] = Max;
}
vl[g.vexnum - 1] = ve[g.vexnum - 1];//从尾部开始
int i = 1,j,max=-1;
while (!s.empty())//堆栈不空 计算事件最迟发生时间 运用逆的拓扑排序 类似于求ve【】
{
i = s.top();//获取栈顶元素
s.pop();//弹出栈顶元素
for (int j = 1; j <= g.vexnum; j++)
{
if (g.matrix[i][j] != Max)
{
int tmp = g.matrix[i][j];
if (vl[j] - g.matrix[i][j] < vl[i])
{
vl[i] = vl[j] - g.matrix[i][j];
}
}
}
}
for (i = 1; i <= g.vexnum; i++)//计算关键路径长度
{
for (j = 1; j <= g.vexnum; j++)
{
if (g.matrix[i][j] != Max)
{
if (ve[i] == vl[j] - g.matrix[i][j])
{
max = j;
line(P, Point(local[i].x, local[i].y), Point(local[j].x, local[j].y), Scalar(0, 0, 255), 5, CV_AA);
imshow("out", P);
waitKey(50);
}
}
}
}
line(P, Point(local[max].x, local[max].y), Point(local[9].x, local[9].y), Scalar(0, 0, 255), 5, CV_AA);
imshow("out", P);
waitKey(50);
printf("关键路径%d\n" ,vl[g.vexnum - 1]);
}