在Python中,通常有这几种方式来表示时间:
一、时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
用于时间间隔的计算
二、格式化的时间字符串(Format String)(按照某种格式显示的)
用于显示格式
三、结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)
用于单独获取当前时间的某一部分
import time
#--------------------------我们先以当前时间为准,让大家快速认识三种形式的时间
print(time.time()) # 时间戳:1487130156.419527
print(time.strftime("%Y-%m-%d %H:%M:%S %p")) #格式化的时间字符串:'2017-02-15 11:40:53 AM'
print(time.strftime("%Y-%m-%d %X")) #格式化的时间字符串:'2017-02-15 11:40:53'
print(time.localtime()) #本地时区的struct_time
print(time.gmtime()) #UTC时区的struct_time
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (1)
%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Sunday are considered to be in week 0. (3)
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Monday are considered to be in week 0. (3)
%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%z Time zone offset indicating a positive or negative time difference from UTC/GMT of the form +HHMM or -HHMM, where H represents decimal hour digits and M represents decimal minute digits [-23:59, +23:59].
%Z Time zone name (no characters if no time zone exists).
%% A literal '%' character.
格式化字符串的时间格式
其中计算机认识的时间只能是’时间戳’格式,而程序员可处理的或者说人类能看懂的时间有: ‘格式化的时间字符串’,‘结构化的时间’ ,于是有了下图的转换关系
#--------------------------按图1转换时间
# localtime([secs])
# 将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。
time.localtime()
time.localtime(1473525444.037215)
# gmtime([secs]) 和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。
# mktime(t) : 将一个struct_time转化为时间戳。
print(time.mktime(time.localtime()))#1473525749.0
# strftime(format[, t]) : 把一个代表时间的元组或者struct_time(如由time.localtime()和
# time.gmtime()返回)转化为格式化的时间字符串。如果t未指定,将传入time.localtime()。如果元组中任何一个
# 元素越界,ValueError的错误将会被抛出。
print(time.strftime("%Y-%m-%d %X", time.localtime()))#2016-09-11 00:49:56
# time.strptime(string[, format])
# 把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。
print(time.strptime('2011-05-05 16:37:06', '%Y-%m-%d %X'))
#time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=16, tm_min=37, tm_sec=6,
# tm_wday=3, tm_yday=125, tm_isdst=-1)
#在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y"。
#--------------------------按图2转换时间
# asctime([t]) : 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。
# 如果没有参数,将会将time.localtime()作为参数传入。
print(time.asctime())#Sun Sep 11 00:43:43 2016
# ctime([secs]) : 把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为
# None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
print(time.ctime()) # Sun Sep 11 00:46:38 2016
print(time.ctime(time.time())) # Sun Sep 11 00:46:38 2016
#--------------------------其他用法
# sleep(secs)
# 线程推迟指定的时间运行,单位为秒。
#时间加减
import datetime
# print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925
#print(datetime.date.fromtimestamp(time.time()) ) # 时间戳直接转成日期格式 2016-08-19
# print(datetime.datetime.now() )
# print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天
# print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天
# print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时
# print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分
#
# c_time = datetime.datetime.now()
# print(c_time.replace(minute=3,hour=2)) #时间替换
datetime模块
import random
print(random.random())#(0,1)----float 大于0且小于1之间的小数
print(random.randint(1,3)) #[1,3] 大于等于1且小于等于3之间的整数
print(random.randrange(1,3)) #[1,3) 大于等于1且小于3之间的整数
print(random.choice([1,'23',[4,5]]))#1或者23或者[4,5]
print(random.sample([1,'23',[4,5]],2))#列表元素任意2个组合
print(random.uniform(1,3))#大于1小于3的小数,如1.927109612082716
item=[1,3,5,7,9]
random.shuffle(item) #打乱item的顺序,相当于"洗牌"
print(item)
生成随机验证码
import random
def make_code(n):
res=''
for i in range(n):
s1=chr(random.randint(65,90))
s2=str(random.randint(0,9))
res+=random.choice([s1,s2])
return res
print(make_code(9))
生成随机验证码
os模块是与操作系统交互的一个接口
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd
os.curdir 返回当前目录: ('.')
os.pardir 获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2') 可生成多层递归目录
os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove() 删除一个文件
os.rename("oldname","newname") 重命名文件/目录
os.stat('path/filename') 获取文件/目录信息
os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep 输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command") 运行shell命令,直接显示
os.environ 获取系统环境变量
os.path.abspath(path) 返回path规范化的绝对路径
os.path.split(path) 将path分割成目录和文件名二元组返回
os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path) 如果path是绝对路径,返回True
os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path) 返回path所指向的文件或者目录的最后存取时间
os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小
在Linux和Mac平台上,该函数会原样返回path,在windows平台上会将路径中所有字符转换为小写,并将所有斜杠转换为饭斜杠。
>>> os.path.normcase('c:/windows\\system32\\')
'c:\\windows\\system32\\'
规范化路径,如..和/
>>> os.path.normpath('c://windows\\System32\\../Temp/')
'c:\\windows\\Temp'
>>> a='/Users/jieli/test1/\\\a1/\\\\aa.py/../..'
>>> print(os.path.normpath(a))
/Users/jieli/test1
os路径处理
#方式一:推荐使用
import os
#具体应用
import os,sys
possible_topdir = os.path.normpath(os.path.join(
os.path.abspath(__file__),
os.pardir, #上一级
os.pardir,
os.pardir
))
sys.path.insert(0,possible_topdir)
#方式二:不推荐使用
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.argv 命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0)
sys.version 获取Python解释程序的版本信息
sys.maxint 最大的Int值
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
#=========知识储备==========
#进度条的效果
[# ]
[## ]
[### ]
[#### ]
#指定宽度
print('[%-15s]' %'#')
print('[%-15s]' %'##')
print('[%-15s]' %'###')
print('[%-15s]' %'####')
#打印%
print('%s%%' %(100)) #第二个%号代表取消第一个%的特殊意义
#可传参来控制宽度
print('[%%-%ds]' %50) #[%-50s]
print(('[%%-%ds]' %50) %'#')
print(('[%%-%ds]' %50) %'##')
print(('[%%-%ds]' %50) %'###')
#=========实现打印进度条函数==========
import sys
import time
def progress(percent,width=50):
if percent >= 1:
percent=1
show_str=('[%%-%ds]' %width) %(int(width*percent)*'#')
print('\r%s %d%%' %(show_str,int(100*percent)),file=sys.stdout,flush=True,end='')
#=========应用==========
data_size=1025
recv_size=0
while recv_size < data_size:
time.sleep(0.1) #模拟数据的传输延迟
recv_size+=1024 #每次收1024
percent=recv_size/data_size #接收的比例
progress(percent,width=70) #进度条的宽度70
打印进度条
高级的 文件、文件夹、压缩包 处理模块
shutil.copyfileobj(fsrc, fdst[, length])
将文件内容拷贝到另一个文件中
import shutil
shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w'))
shutil.copyfile(src, dst)
拷贝文件
shutil.copyfile('f1.log', 'f2.log') #目标文件无需存在
shutil.copymode(src, dst)
仅拷贝权限。内容、组、用户均不变
shutil.copymode('f1.log', 'f2.log') #目标文件必须存在
shutil.copystat(src, dst)
仅拷贝状态的信息,包括:mode bits, atime, mtime, flags
shutil.copystat('f1.log', 'f2.log') #目标文件必须存在
shutil.copy(src, dst)
拷贝文件和权限
import shutil
shutil.copy('f1.log', 'f2.log')
shutil.copy2(src, dst)
拷贝文件和状态信息
import shutil
shutil.copy2('f1.log', 'f2.log')
shutil.ignore_patterns(*patterns)
shutil.copytree(src, dst, symlinks=False, ignore=None)
递归的去拷贝文件夹
import shutil
shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*')) #目标目录不能存在,注意对folder2目录父级目录要有可写权限,ignore的意思是排除
import shutil
shutil.copytree('f1', 'f2', symlinks=True, ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))
'''
通常的拷贝都把软连接拷贝成硬链接,即对待软连接来说,创建新的文件
'''
拷贝软连接
shutil.rmtree(path[, ignore_errors[, onerror]])
递归的去删除文件
import shutil
shutil.rmtree('folder1')
shutil.move(src, dst)
递归的去移动文件,它类似mv命令,其实就是重命名。
import shutil
shutil.move('folder1', 'folder3')
shutil.make_archive(base_name, format,…)
创建压缩包并返回文件路径,例如:zip、tar
创建压缩包并返回文件路径,例如:zip、tar
base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
如 data_bak =>保存至当前路径
如:/tmp/data_bak =>保存至/tmp/
format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
root_dir: 要压缩的文件夹路径(默认当前目录)
owner: 用户,默认当前用户
group: 组,默认当前组
logger: 用于记录日志,通常是logging.Logger对象
#将 /data 下的文件打包放置当前程序目录
import shutil
ret = shutil.make_archive("data_bak", 'gztar', root_dir='/data')
#将 /data下的文件打包放置 /tmp/目录
import shutil
ret = shutil.make_archive("/tmp/data_bak", 'gztar', root_dir='/data')
shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:
import zipfile
# 压缩
z = zipfile.ZipFile('laxi.zip', 'w')
z.write('a.log')
z.write('data.data')
z.close()
# 解压
z = zipfile.ZipFile('laxi.zip', 'r')
z.extractall(path='.')
z.close()
zipfile压缩解压缩
import tarfile
# 压缩
>>> t=tarfile.open('/tmp/egon.tar','w')
>>> t.add('/test1/a.py',arcname='a.bak')
>>> t.add('/test1/b.py',arcname='b.bak')
>>> t.close()
# 解压
>>> t=tarfile.open('/tmp/egon.tar','r')
>>> t.extractall('/egon')
>>> t.close()
tarfile压缩解压缩
import json
x="[null,true,false,1]"
print(eval(x)) #报错,无法解析null类型,而json就可以
print(json.loads(x))
什么是序列化?
我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
为什么要序列化?
1:持久保存状态
需知一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,'状态’会以各种各样有结构的数据类型(也可简单的理解为变量)的形式被保存在内存中。
内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。
在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。
具体的来说,你玩使命召唤闯到了第13关,你保存游戏状态,关机走人,下次再玩,还能从上次的位置开始继续闯关。或如,虚拟机状态的挂起等。
2:跨平台数据交互
序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好实用一种序列化的格式,那么便打破了平台/语言差异化带来的限制,实现了跨平台数据交互。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
如何序列化之json和pickle:
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
import json
dic={'name':'alvin','age':23,'sex':'male'}
print(type(dic))#
j=json.dumps(dic)
print(type(j))#
f=open('序列化对象','w')
f.write(j) #-------------------等价于json.dump(dic,f)
f.close()
#-----------------------------反序列化
import json
f=open('序列化对象')
data=json.loads(f.read())# 等价于data=json.load(f)
import json
#dct="{'1':111}"#json 不认单引号
#dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1}
dct='{"1":"111"}'
print(json.loads(dct))
#conclusion:
# 无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads
注意点
# 在python解释器2.7与3.6之后都可以json.loads(bytes类型),但唯独3.5不可以
>>> import json
>>> json.loads(b'{"a":111}')
Traceback (most recent call last):
File "" , line 1, in <module>
File "/Users/linhaifeng/anaconda3/lib/python3.5/json/__init__.py", line 312, in loads
s.__class__.__name__))
TypeError: the JSON object must be str, not 'bytes'
了解
# 一.什么是猴子补丁?
属性在运行时的动态替换,叫做猴子补丁(Monkey Patch)。
猴子补丁的核心就是用自己的代码替换所用模块的源代码,详细地如下
1,这个词原来为Guerrilla Patch,杂牌军、游击队,说明这部分不是原装的,在英文里guerilla发音和gorllia(猩猩)相似,再后来就写了monkey(猴子)。
2,还有一种解释是说由于这种方式将原来的代码弄乱了(messing with it),在英文里叫monkeying about(顽皮的),所以叫做Monkey Patch。
# 二. 猴子补丁的功能(一切皆对象)
1.拥有在模块运行时替换的功能, 例如: 一个函数对象赋值给另外一个函数对象(把函数原本的执行的功能给替换了)
class Monkey:
def hello(self):
print('hello')
def world(self):
print('world')
def other_func():
print("from other_func")
monkey = Monkey()
monkey.hello = monkey.world
monkey.hello()
monkey.world = other_func
monkey.world()
# 三.monkey patch的应用场景
如果我们的程序中已经基于json模块编写了大量代码了,发现有一个模块ujson比它性能更高,
但用法一样,我们肯定不会想所有的代码都换成ujson.dumps或者ujson.loads,那我们可能
会想到这么做
import ujson as json,但是这么做的需要每个文件都重新导入一下,维护成本依然很高
此时我们就可以用到猴子补丁了
只需要在入口处加上
, 只需要在入口加上:
import json
import ujson
def monkey_patch_json():
json.__name__ = 'ujson'
json.dumps = ujson.dumps
json.loads = ujson.loads
monkey_patch_json() # 之所以在入口处加,是因为模块在导入一次后,后续的导入便直接引用第一次的成果
#其实这种场景也比较多, 比如我们引用团队通用库里的一个模块, 又想丰富模块的功能, 除了继承之外也可以考虑用Monkey
Patch.采用猴子补丁之后,如果发现ujson不符合预期,那也可以快速撤掉补丁。个人感觉Monkey
Patch带了便利的同时也有搞乱源代码的风险!
猴子补丁与ujson
import pickle
dic={'name':'alvin','age':23,'sex':'male'}
print(type(dic))#
j=pickle.dumps(dic)
print(type(j))#
f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes'
f.write(j) #-------------------等价于pickle.dump(dic,f)
f.close()
#-------------------------反序列化
import pickle`在这里插入代码片`
f=open('序列化对象_pickle','rb')
data=pickle.loads(f.read())# 等价于data=pickle.load(f)
print(data['age'])
# coding:utf-8
import pickle
with open('a.pkl',mode='wb') as f:
# 一:在python3中执行的序列化操作如何兼容python2
# python2不支持protocol>2,默认python3中protocol=4
# 所以在python3中dump操作应该指定protocol=2
pickle.dump('你好啊',f,protocol=2)
with open('a.pkl', mode='rb') as f:
# 二:python2中反序列化才能正常使用
res=pickle.load(f)
print(res)
python2与python3的pickle兼容性问题
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。
xml的格式如下,就是通过<>节点来区别数据结构的:
<data>
<country name="Liechtenstein">
<rank updated="yes">2rank>
<year>2008year>
<gdppc>141100gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>
country>
<country name="Singapore">
<rank updated="yes">5rank>
<year>2011year>
<gdppc>59900gdppc>
<neighbor name="Malaysia" direction="N"/>
country>
<country name="Panama">
<rank updated="yes">69rank>
<year>2011year>
<gdppc>13600gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>
country>
data>
xml数据
xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml:
# print(root.iter('year')) #全文搜索
# print(root.find('country')) #在root的子节点找,只找一个
# print(root.findall('country')) #在root的子节点找,找所有
import xml.etree.ElementTree as ET
tree = ET.parse("xmltest.xml")
root = tree.getroot()
print(root.tag)
#遍历xml文档
for child in root:
print('========>',child.tag,child.attrib,child.attrib['name'])
for i in child:
print(i.tag,i.attrib,i.text)
#只遍历year 节点
for node in root.iter('year'):
print(node.tag,node.text)
#---------------------------------------
import xml.etree.ElementTree as ET
tree = ET.parse("xmltest.xml")
root = tree.getroot()
#修改
for node in root.iter('year'):
new_year=int(node.text)+1
node.text=str(new_year)
node.set('updated','yes')
node.set('version','1.0')
tree.write('test.xml')
#删除node
for country in root.findall('country'):
rank = int(country.find('rank').text)
if rank > 50:
root.remove(country)
tree.write('output.xml')
#在country内添加(append)节点year2
import xml.etree.ElementTree as ET
tree = ET.parse("a.xml")
root=tree.getroot()
for country in root.findall('country'):
for year in country.findall('year'):
if int(year.text) > 2000:
year2=ET.Element('year2')
year2.text='新年'
year2.attrib={'update':'yes'}
country.append(year2) #往country节点下添加子节点
tree.write('a.xml.swap')
自己创建XML文件:
import xml.etree.ElementTree as ET
new_xml = ET.Element("namelist")
name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
age = ET.SubElement(name,"age",attrib={"checked":"no"})
sex = ET.SubElement(name,"sex")
sex.text = '33'
name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
age = ET.SubElement(name2,"age")
age.text = '19'
et = ET.ElementTree(new_xml) #生成文档对象
et.write("test.xml", encoding="utf-8",xml_declaration=True)
ET.dump(new_xml) #打印生成的格式
shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型
import shelve
f=shelve.open(r'sheve.txt')
# f['stu1_info']={'name':'egon','age':18,'hobby':['piao','smoking','drinking']}
# f['stu2_info']={'name':'gangdan','age':53}
# f['school_info']={'website':'http://www.pypy.org','city':'beijing'}
print(f['stu1_info']['hobby'])
f.close()
配置文件如下:
# 注释1
; 注释2
[section1]
k1 = v1
k2:v2
user=egon
age=18
is_admin=true
salary=31
[section2]
k1 = v1
读取
import configparser
config=configparser.ConfigParser()
config.read('a.cfg')
#查看所有的标题
res=config.sections() #['section1', 'section2']
print(res)
#查看标题section1下所有key=value的key
options=config.options('section1')
print(options) #['k1', 'k2', 'user', 'age', 'is_admin', 'salary']
#查看标题section1下所有key=value的(key,value)格式
item_list=config.items('section1')
print(item_list) #[('k1', 'v1'), ('k2', 'v2'), ('user', 'egon'), ('age', '18'), ('is_admin', 'true'), ('salary', '31')]
#查看标题section1下user的值=>字符串格式
val=config.get('section1','user')
print(val) #egon
#查看标题section1下age的值=>整数格式
val1=config.getint('section1','age')
print(val1) #18
#查看标题section1下is_admin的值=>布尔值格式
val2=config.getboolean('section1','is_admin')
print(val2) #True
#查看标题section1下salary的值=>浮点型格式
val3=config.getfloat('section1','salary')
print(val3) #31.0
改写
import configparser
config=configparser.ConfigParser()
config.read('a.cfg',encoding='utf-8')
#删除整个标题section2
config.remove_section('section2')
#删除标题section1下的某个k1和k2
config.remove_option('section1','k1')
config.remove_option('section1','k2')
#判断是否存在某个标题
print(config.has_section('section1'))
#判断标题section1下是否有user
print(config.has_option('section1',''))
#添加一个标题
config.add_section('egon')
#在标题egon下添加name=egon,age=18的配置
config.set('egon','name','egon')
config.set('egon','age',18) #报错,必须是字符串
#最后将修改的内容写入文件,完成最终的修改
config.write(open('a.cfg','w'))
import configparser
config = configparser.ConfigParser()
config["DEFAULT"] = {'ServerAliveInterval': '45',
'Compression': 'yes',
'CompressionLevel': '9'}
config['bitbucket.org'] = {}
config['bitbucket.org']['User'] = 'hg'
config['topsecret.server.com'] = {}
topsecret = config['topsecret.server.com']
topsecret['Host Port'] = '50022' # mutates the parser
topsecret['ForwardX11'] = 'no' # same here
config['DEFAULT']['ForwardX11'] = 'yes'
with open('example.ini', 'w') as configfile:
config.write(configfile)
基于上述方法添加一个ini文档
1、什么叫hash:hash是一种算法(3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法),该算法接受传入的内容,经过运算得到一串hash值
2、hash值的特点是:
2.1 只要传入的内容一样,得到的hash值必然一样=====>要用明文传输密码文件完整性校验
2.2 不能由hash值返解成内容=======》把密码做成hash值,不应该在网络传输明文密码
2.3 只要使用的hash算法不变,无论校验的内容有多大,得到的hash值长度是固定的
hash算法就像一座工厂,工厂接收你送来的原材料(可以用m.update()为工厂运送原材料),经过加工返回的产品就是hash值
import hashlib
m=hashlib.md5()# m=hashlib.sha256()
m.update('hello'.encode('utf8'))
print(m.hexdigest()) #5d41402abc4b2a76b9719d911017c592
m.update('alvin'.encode('utf8'))
print(m.hexdigest()) #92a7e713c30abbb0319fa07da2a5c4af
m2=hashlib.md5()
m2.update('helloalvin'.encode('utf8'))
print(m2.hexdigest()) #92a7e713c30abbb0319fa07da2a5c4af
'''
注意:把一段很长的数据update多次,与一次update这段长数据,得到的结果一样
但是update多次为校验大文件提供了可能。
'''
以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。
import hashlib
# ######## 256 ########
hash = hashlib.sha256('898oaFs09f'.encode('utf8'))
hash.update('alvin'.encode('utf8'))
print (hash.hexdigest())#e79e68f070cdedcfe63eaf1a2e92c83b4cfb1b5c6bc452d214c1b7e77cdfd1c7
import hashlib
passwds=[
'alex3714',
'alex1313',
'alex94139413',
'alex123456',
'123456alex',
'a123lex',
]
def make_passwd_dic(passwds):
dic={}
for passwd in passwds:
m=hashlib.md5()
m.update(passwd.encode('utf-8'))
dic[passwd]=m.hexdigest()
return dic
def break_code(cryptograph,passwd_dic):
for k,v in passwd_dic.items():
if v == cryptograph:
print('密码是===>\033[46m%s\033[0m' %k)
cryptograph='aee949757a2e698417463d47acac93df'
break_code(cryptograph,make_passwd_dic(passwds))
模拟撞库破解密码
python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密:
import hmac
h1=hmac.new('hello'.encode('utf-8'),digestmod='md5')
h1.update('world'.encode('utf-8'))
print(h1.hexdigest())
注意!注意!注意
#要想保证hmac最终结果一致,必须保证:
#1:hmac.new括号内指定的初始key一样
#2:无论update多少次,校验的内容累加到一起是一样的内容
# 操作一
import hmac
h1=hmac.new('hello'.encode('utf-8'),digestmod='md5')
h1.update('world'.encode('utf-8'))
print(h1.hexdigest()) # 0e2564b7e100f034341ea477c23f283b
# 操作二
import hmac
h2=hmac.new('hello'.encode('utf-8'),digestmod='md5')
h2.update('w'.encode('utf-8'))
h2.update('orld'.encode('utf-8'))
print(h1.hexdigest()) # 0e2564b7e100f034341ea477c23f283b
import subprocess
'''
sh-3.2# ls /Users/egon/Desktop |grep txt$
mysql.txt
tt.txt
事物.txt
'''
res1=subprocess.Popen('ls /Users/jieli/Desktop',shell=True,stdout=subprocess.PIPE)
res=subprocess.Popen('grep txt$',shell=True,stdin=res1.stdout,
stdout=subprocess.PIPE)
print(res.stdout.read().decode('utf-8'))
#等同于上面,但是上面的优势在于,一个数据流可以和另外一个数据流交互,可以通过爬虫得到结果然后交给grep
res1=subprocess.Popen('ls /Users/jieli/Desktop |grep txt$',shell=True,stdout=subprocess.PIPE)
print(res1.stdout.read().decode('utf-8'))
#windows下:
# dir | findstr 'test*'
# dir | findstr 'txt$'
import subprocess
res1=subprocess.Popen(r'dir C:\Users\Administrator\PycharmProjects\test\函数备课',shell=True,stdout=subprocess.PIPE)
res=subprocess.Popen('findstr test*',shell=True,stdin=res1.stdout,
stdout=subprocess.PIPE)
print(res.stdout.read().decode('gbk')) #subprocess使用当前系统默认编码,得到结果为bytes类型,在windows下需要用gbk解码
CRITICAL = 50 #FATAL = CRITICAL
ERROR = 40
WARNING = 30 #WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0 #不设置
import logging
logging.debug('调试debug')
logging.info('消息info')
logging.warning('警告warn')
logging.error('错误error')
logging.critical('严重critical')
'''
WARNING:root:警告warn
ERROR:root:错误error
CRITICAL:root:严重critical
'''
可在logging.basicConfig()函数中通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
#格式
%(name)s:Logger的名字,并非用户名,详细查看
%(levelno)s:数字形式的日志级别
%(levelname)s:文本形式的日志级别
%(pathname)s:调用日志输出函数的模块的完整路径名,可能没有
%(filename)s:调用日志输出函数的模块的文件名
%(module)s:调用日志输出函数的模块名
%(funcName)s:调用日志输出函数的函数名
%(lineno)d:调用日志输出函数的语句所在的代码行
%(created)f:当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d:输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s:字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d:线程ID。可能没有
%(threadName)s:线程名。可能没有
%(process)d:进程ID。可能没有
%(message)s:用户输出的消息
logging.basicConfig()
#======介绍
可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息
#========使用
import logging
logging.basicConfig(filename='access.log',
format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',
level=10)
logging.debug('调试debug')
logging.info('消息info')
logging.warning('警告warn')
logging.error('错误error')
logging.critical('严重critical')
#========结果
access.log内容:
2017-07-28 20:32:17 PM - root - DEBUG -test: 调试debug
2017-07-28 20:32:17 PM - root - INFO -test: 消息info
2017-07-28 20:32:17 PM - root - WARNING -test: 警告warn
2017-07-28 20:32:17 PM - root - ERROR -test: 错误error
2017-07-28 20:32:17 PM - root - CRITICAL -test: 严重critical
part2: 可以为logging模块指定模块级的配置,即所有logger的配置
#logger:产生日志的对象
#Filter:过滤日志的对象
#Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
#Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
'''
critical=50
error =40
warning =30
info = 20
debug =10
'''
import logging
#1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
logger=logging.getLogger(__file__)
#2、Filter对象:不常用,略
#3、Handler对象:接收logger传来的日志,然后控制输出
h1=logging.FileHandler('t1.log') #打印到文件
h2=logging.FileHandler('t2.log') #打印到文件
h3=logging.StreamHandler() #打印到终端
#4、Formatter对象:日志格式
formmater1=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',)
formmater2=logging.Formatter('%(asctime)s : %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',)
formmater3=logging.Formatter('%(name)s %(message)s',)
#5、为Handler对象绑定格式
h1.setFormatter(formmater1)
h2.setFormatter(formmater2)
h3.setFormatter(formmater3)
#6、将Handler添加给logger并设置日志级别
logger.addHandler(h1)
logger.addHandler(h2)
logger.addHandler(h3)
logger.setLevel(10)
#7、测试
logger.debug('debug')
logger.info('info')
logger.warning('warning')
logger.error('error')
logger.critical('critical')
Logger is also the first to filter the message based on a level — if you set the logger to INFO, and all handlers to DEBUG, you still won't receive DEBUG messages on handlers — they'll be rejected by the logger itself. If you set logger to DEBUG, but all handlers to INFO, you won't receive any DEBUG messages either — because while the logger says "ok, process this", the handlers reject it (DEBUG < INFO).
#验证
import logging
form=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',)
ch=logging.StreamHandler()
ch.setFormatter(form)
# ch.setLevel(10)
ch.setLevel(20)
l1=logging.getLogger('root')
# l1.setLevel(20)
l1.setLevel(10)
l1.addHandler(ch)
l1.debug('l1 debug')
重要,重要,重要!!!
import logging
formatter=logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',)
ch=logging.StreamHandler()
ch.setFormatter(formatter)
logger1=logging.getLogger('root')
logger2=logging.getLogger('root.child1')
logger3=logging.getLogger('root.child1.child2')
logger1.addHandler(ch)
logger2.addHandler(ch)
logger3.addHandler(ch)
logger1.setLevel(10)
logger2.setLevel(10)
logger3.setLevel(10)
logger1.debug('log1 debug')
logger2.debug('log2 debug')
logger3.debug('log3 debug')
'''
2017-07-28 22:22:05 PM - root - DEBUG -test: log1 debug
2017-07-28 22:22:05 PM - root.child1 - DEBUG -test: log2 debug
2017-07-28 22:22:05 PM - root.child1 - DEBUG -test: log2 debug
2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test: log3 debug
2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test: log3 debug
2017-07-28 22:22:05 PM - root.child1.child2 - DEBUG -test: log3 debug
'''
"""
logging配置
"""
import os
import logging.config
# 定义三种日志输出格式 开始
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'
# 定义日志输出格式 结束
logfile_dir = os.path.dirname(os.path.abspath(__file__)) # log文件的目录
logfile_name = 'all2.log' # log文件名
# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):
os.mkdir(logfile_dir)
# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)
# log配置字典
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5,
'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了
},
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
},
}
def load_my_logging_cfg():
logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置
logger = logging.getLogger(__name__) # 生成一个log实例
logger.info('It works!') # 记录该文件的运行状态
if __name__ == '__main__':
load_my_logging_cfg()
logging配置文件
"""
MyLogging Test
"""
import time
import logging
import my_logging # 导入自定义的logging配置
logger = logging.getLogger(__name__) # 生成logger实例
def demo():
logger.debug("start range... time:{}".format(time.time()))
logger.info("中文测试开始。。。")
for i in range(10):
logger.debug("i:{}".format(i))
time.sleep(0.2)
else:
logger.debug("over range... time:{}".format(time.time()))
logger.info("中文测试结束。。。")
if __name__ == "__main__":
my_logging.load_my_logging_cfg() # 在你程序文件的入口加载自定义logging配置
demo()
使用
注意注意注意:
#1、有了上述方式我们的好处是:所有与logging模块有关的配置都写到字典中就可以了,更加清晰,方便管理
#2、我们需要解决的问题是:
1、从字典加载配置:logging.config.dictConfig(settings.LOGGING_DIC)
2、拿到logger对象来产生日志
logger对象都是配置到字典的loggers 键对应的子字典中的
按照我们对logging模块的理解,要想获取某个东西都是通过名字,也就是key来获取的
于是我们要获取不同的logger对象就是
logger=logging.getLogger('loggers子字典的key名')
但问题是:如果我们想要不同logger名的logger对象都共用一段配置,那么肯定不能在loggers子字典中定义n个key
'loggers': {
'l1': {
'handlers': ['default', 'console'], #
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
'l2: {
'handlers': ['default', 'console' ],
'level': 'DEBUG',
'propagate': False, # 向上(更高level的logger)传递
},
'l3': {
'handlers': ['default', 'console'], #
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
},
}
#我们的解决方式是,定义一个空的key
'loggers': {
'': {
'handlers': ['default', 'console'],
'level': 'DEBUG',
'propagate': True,
},
}
这样我们再取logger对象时
logging.getLogger(__name__),不同的文件__name__不同,这保证了打印日志时标识信息不同,但是拿着该名字去loggers里找key名时却发现找不到,于是默认使用key=''的配置
!!!关于如何拿到logger对象的详细解释!!!
另外一个django的配置,瞄一眼就可以,跟上面的一样
#logging_config.py
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]'
'[%(levelname)s][%(message)s]'
},
'simple': {
'format': '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
},
'collect': {
'format': '%(message)s'
}
},
'filters': {
'require_debug_true': {
'()': 'django.utils.log.RequireDebugTrue',
},
},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'filters': ['require_debug_true'],
'class': 'logging.StreamHandler',
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_info.log"), # 日志文件
'maxBytes': 1024 * 1024 * 5, # 日志大小 5M
'backupCount': 3,
'formatter': 'standard',
'encoding': 'utf-8',
},
#打印到文件的日志:收集错误及以上的日志
'error': {
'level': 'ERROR',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_err.log"), # 日志文件
'maxBytes': 1024 * 1024 * 5, # 日志大小 5M
'backupCount': 5,
'formatter': 'standard',
'encoding': 'utf-8',
},
#打印到文件的日志
'collect': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,自动切
'filename': os.path.join(BASE_LOG_DIR, "xxx_collect.log"),
'maxBytes': 1024 * 1024 * 5, # 日志大小 5M
'backupCount': 5,
'formatter': 'collect',
'encoding': "utf-8"
}
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'': {
'handlers': ['default', 'console', 'error'],
'level': 'DEBUG',
'propagate': True,
},
#logging.getLogger('collect')拿到的logger配置
'collect': {
'handlers': ['console', 'collect'],
'level': 'INFO',
}
},
}
# -----------
# 用法:拿到俩个logger
logger = logging.getLogger(__name__) #线上正常的日志
collect_logger = logging.getLogger("collect") #领导说,需要为领导们单独定制领导们看的日志
1、日志级别与配置
import logging
# 一:日志配置
logging.basicConfig(
# 1、日志输出位置:1、终端 2、文件
# filename='access.log', # 不指定,默认打印到终端
# 2、日志格式
format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
# 3、时间格式
datefmt='%Y-%m-%d %H:%M:%S %p',
# 4、日志级别
# critical => 50
# error => 40
# warning => 30
# info => 20
# debug => 10
level=30,
)
# 二:输出日志
logging.debug('调试debug')
logging.info('消息info')
logging.warning('警告warn')
logging.error('错误error')
logging.critical('严重critical')
'''
# 注意下面的root是默认的日志名字
WARNING:root:警告warn
ERROR:root:错误error
CRITICAL:root:严重critical
'''
2、日志配置字典
"""
logging配置
"""
import os
# 1、定义三种日志输出格式,日志中可能用到的格式化串如下
# %(name)s Logger的名字
# %(levelno)s 数字形式的日志级别
# %(levelname)s 文本形式的日志级别
# %(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
# %(filename)s 调用日志输出函数的模块的文件名
# %(module)s 调用日志输出函数的模块名
# %(funcName)s 调用日志输出函数的函数名
# %(lineno)d 调用日志输出函数的语句所在的代码行
# %(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
# %(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
# %(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
# %(thread)d 线程ID。可能没有
# %(threadName)s 线程名。可能没有
# %(process)d 进程ID。可能没有
# %(message)s用户输出的消息
# 2、强调:其中的%(name)s为getlogger时指定的名字
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]'
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
test_format = '%(asctime)s] %(message)s'
# 3、日志配置字典
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
'test': {
'format': test_format
},
},
'filters': {},
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件,日志轮转
'formatter': 'standard',
# 可以定制日志文件路径
# BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # log文件的目录
# LOG_PATH = os.path.join(BASE_DIR,'a1.log')
'filename': 'a1.log', # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5,
'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了
},
'other': {
'level': 'DEBUG',
'class': 'logging.FileHandler', # 保存到文件
'formatter': 'test',
'filename': 'a2.log',
'encoding': 'utf-8',
},
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置
'': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG', # loggers(第一层日志级别关限制)--->handlers(第二层日志级别关卡限制)
'propagate': False, # 默认为True,向上(更高level的logger)传递,通常设置为False即可,否则会一份日志向上层层传递
},
'专门的采集': {
'handlers': ['other',],
'level': 'DEBUG',
'propagate': False,
},
},
}
日志配置字典LOGGING_DIC
3、使用
import settings
# !!!强调!!!
# 1、logging是一个包,需要使用其下的config、getLogger,可以如下导入
# from logging import config
# from logging import getLogger
# 2、也可以使用如下导入
import logging.config # 这样连同logging.getLogger都一起导入了,然后使用前缀logging.config.
# 3、加载配置
logging.config.dictConfig(settings.LOGGING_DIC)
# 4、输出日志
logger1=logging.getLogger('用户交易')
logger1.info('egon儿子alex转账3亿冥币')
# logger2=logging.getLogger('专门的采集') # 名字传入的必须是'专门的采集',与LOGGING_DIC中的配置唯一对应
# logger2.debug('专门采集的日志')
common.py
一:什么是正则?
正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法。或者说:正则就是用来描述一类事物的规则。(在Python中)它内嵌在Python中,并通过 re 模块实现。正则表达式模式被编译成一系列的字节码,然后由用 C 编写的匹配引擎执行。
生活中处处都是正则:
比如我们描述:4条腿
你可能会想到的是四条腿的动物或者桌子,椅子等
继续描述:4条腿,活的
就只剩下四条腿的动物这一类了
二:常用匹配模式(元字符)
https://blog.csdn.net/yufenghyc/article/details/51078107
# =================================匹配模式=================================
#一对一的匹配
# 'hello'.replace(old,new)
# 'hello'.find('pattern')
#正则匹配
import re
#\w与\W
print(re.findall('\w','hello egon 123')) #['h', 'e', 'l', 'l', 'o', 'e', 'g', 'o', 'n', '1', '2', '3']
print(re.findall('\W','hello egon 123')) #[' ', ' ']
#\s与\S
print(re.findall('\s','hello egon 123')) #[' ', ' ', ' ', ' ']
print(re.findall('\S','hello egon 123')) #['h', 'e', 'l', 'l', 'o', 'e', 'g', 'o', 'n', '1', '2', '3']
#\n \t都是空,都可以被\s匹配
print(re.findall('\s','hello \n egon \t 123')) #[' ', '\n', ' ', ' ', '\t', ' ']
#\n与\t
print(re.findall(r'\n','hello egon \n123')) #['\n']
print(re.findall(r'\t','hello egon\t123')) #['\n']
#\d与\D
print(re.findall('\d','hello egon 123')) #['1', '2', '3']
print(re.findall('\D','hello egon 123')) #['h', 'e', 'l', 'l', 'o', ' ', 'e', 'g', 'o', 'n', ' ']
#\A与\Z
print(re.findall('\Ahe','hello egon 123')) #['he'],\A==>^
print(re.findall('123\Z','hello egon 123')) #['he'],\Z==>$
#^与$
print(re.findall('^h','hello egon 123')) #['h']
print(re.findall('3$','hello egon 123')) #['3']
# 重复匹配:| . | * | ? | .* | .*? | + | {n,m} |
#.
print(re.findall('a.b','a1b')) #['a1b']
print(re.findall('a.b','a1b a*b a b aaab')) #['a1b', 'a*b', 'a b', 'aab']
print(re.findall('a.b','a\nb')) #[]
print(re.findall('a.b','a\nb',re.S)) #['a\nb']
print(re.findall('a.b','a\nb',re.DOTALL)) #['a\nb']同上一条意思一样
#*
print(re.findall('ab*','bbbbbbb')) #[]
print(re.findall('ab*','a')) #['a']
print(re.findall('ab*','abbbb')) #['abbbb']
#?
print(re.findall('ab?','a')) #['a']
print(re.findall('ab?','abbb')) #['ab']
#匹配所有包含小数在内的数字
print(re.findall('\d+\.?\d*',"asdfasdf123as1.13dfa12adsf1asdf3")) #['123', '1.13', '12', '1', '3']
#.*默认为贪婪匹配
print(re.findall('a.*b','a1b22222222b')) #['a1b22222222b']
#.*?为非贪婪匹配:推荐使用
print(re.findall('a.*?b','a1b22222222b')) #['a1b']
#+
print(re.findall('ab+','a')) #[]
print(re.findall('ab+','abbb')) #['abbb']
#{n,m}
print(re.findall('ab{2}','abbb')) #['abb']
print(re.findall('ab{2,4}','abbb')) #['abb']
print(re.findall('ab{1,}','abbb')) #'ab{1,}' ===> 'ab+'
print(re.findall('ab{0,}','abbb')) #'ab{0,}' ===> 'ab*'
#[]
print(re.findall('a[1*-]b','a1b a*b a-b')) #[]内的都为普通字符了,且如果-没有被转意的话,应该放到[]的开头或结尾
print(re.findall('a[^1*-]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[0-9]b','a1b a*b a-b a=b')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[a-z]b','a1b a*b a-b a=b aeb')) #[]内的^代表的意思是取反,所以结果为['a=b']
print(re.findall('a[a-zA-Z]b','a1b a*b a-b a=b aeb aEb')) #[]内的^代表的意思是取反,所以结果为['a=b']
#\# print(re.findall('a\\c','a\c')) #对于正则来说a\\c确实可以匹配到a\c,但是在python解释器读取a\\c时,会发生转义,然后交给re去执行,所以抛出异常
print(re.findall(r'a\\c','a\c')) #r代表告诉解释器使用rawstring,即原生字符串,把我们正则内的所有符号都当普通字符处理,不要转义
print(re.findall('a\\\\c','a\c')) #同上面的意思一样,和上面的结果一样都是['a\\c']
#():分组
print(re.findall('ab+','ababab123')) #['ab', 'ab', 'ab']
print(re.findall('(ab)+123','ababab123')) #['ab'],匹配到末尾的ab123中的ab
print(re.findall('(?:ab)+123','ababab123')) #findall的结果不是匹配的全部内容,而是组内的内容,?:可以让结果为匹配的全部内容
print(re.findall('href="(.*?)"','点击'))#['http://www.baidu.com']
print(re.findall('href="(?:.*?)"','点击'))#['href="http://www.baidu.com"']
#|
print(re.findall('compan(?:y|ies)','Too many companies have gone bankrupt, and the next one is my company'))
# ===========================re模块提供的方法介绍===========================
import re
#1
print(re.findall('e','alex make love') ) #['e', 'e', 'e'],返回所有满足匹配条件的结果,放在列表里
#2
print(re.search('e','alex make love').group()) #e,只到找到第一个匹配然后返回一个包含匹配信息的对象,该对象可以通过调用group()方法得到匹配的字符串,如果字符串没有匹配,则返回None。
#3
print(re.match('e','alex make love')) #None,同search,不过在字符串开始处进行匹配,完全可以用search+^代替match
#4
print(re.split('[ab]','abcd')) #['', '', 'cd'],先按'a'分割得到''和'bcd',再对''和'bcd'分别按'b'分割
#5
print('===>',re.sub('a','A','alex make love')) #===> Alex mAke love,不指定n,默认替换所有
print('===>',re.sub('a','A','alex make love',1)) #===> Alex make love
print('===>',re.sub('a','A','alex make love',2)) #===> Alex mAke love
print('===>',re.sub('^(\w+)(.*?\s)(\w+)(.*?\s)(\w+)(.*?)$',r'\5\2\3\4\1','alex make love')) #===> love make alex
print('===>',re.subn('a','A','alex make love')) #===> ('Alex mAke love', 2),结果带有总共替换的个数
#6
obj=re.compile('\d{2}')
print(obj.search('abc123eeee').group()) #12
print(obj.findall('abc123eeee')) #['12'],重用了obj
import re
print(re.findall("<(?P\w+)>\w+(?P=tag_name)>" ,"hello
")) #['h1']
print(re.search("<(?P\w+)>\w+(?P=tag_name)>" ,"hello
").group()) #hello
print(re.search("<(?P\w+)>\w+(?P=tag_name)>" ,"hello
").groupdict()) #hello
print(re.search(r"<(\w+)>\w+(\w+)>","hello
").group())
print(re.search(r"<(\w+)>\w+\1>","hello
").group())
补充一
#补充二
import re#使用|,先匹配的先生效,|左边是匹配小数,而findall最终结果是查看分组,所有即使匹配成功小数也不会存入结果#而不是小数时,就去匹配(-?\d+),匹配到的自然就是,非小数的数,在此处即整数#print(re.findall(r"-?\d+\.\d*|(-?\d+)","1-2*(60+(-40.35/5)-(-4*3))")) #找出所有整数['1', '-2', '60', '', '5', '-4', '3']#找到所有数字:print(re.findall('\D?(\-?\d+\.?\d*)',"1-2*(60+(-40.35/5)-(-4*3))")) # ['1','2','60','-40.35','5','-4','3']
#计算器作业参考:http://www.cnblogs.com/wupeiqi/articles/4949995.html
expression='1-2*((60+2*(-3-40.0/5)*(9-2*5/3+7/3*99/4*2998+10*568/14))-(-4*3)/(16-3*2))'
content=re.search('\(([\-\+\*\/]*\d+\.?\d*)+\)',expression).group() #(-3-40.0/5)
#为何同样的表达式search与findall却有不同结果:
print(re.search('\(([\+\-\*\/]*\d+\.?\d*)+\)',"1-12*(60+(-40.35/5)-(-4*3))").group()) #(-40.35/5)
print(re.findall('\(([\+\-\*\/]*\d+\.?\d*)+\)',"1-12*(60+(-40.35/5)-(-4*3))")) #['/5', '*3']
#看这个例子:(\d)+相当于(\d)(\d)(\d)(\d)...,是一系列分组
print(re.search('(\d)+','123').group()) #group的作用是将所有组拼接到一起显示出来
print(re.findall('(\d)+','123')) #findall结果是组内的结果,且是最后一个组的结果
search与findall
#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
#在线调试工具:tool.oschina.net/regex/#
import re
s='''
http://www.baidu.com
[email protected]
你好
010-3141
'''
#最常规匹配
# content='Hello 123 456 World_This is a Regex Demo'
# res=re.match('Hello\s\d\d\d\s\d{3}\s\w{10}.*Demo',content)
# print(res)
# print(res.group())
# print(res.span())
#泛匹配
# content='Hello 123 456 World_This is a Regex Demo'
# res=re.match('^Hello.*Demo',content)
# print(res.group())
#匹配目标,获得指定数据
# content='Hello 123 456 World_This is a Regex Demo'
# res=re.match('^Hello\s(\d+)\s(\d+)\s.*Demo',content)
# print(res.group()) #取所有匹配的内容
# print(res.group(1)) #取匹配的第一个括号内的内容
# print(res.group(2)) #去陪陪的第二个括号内的内容
#贪婪匹配:.*代表匹配尽可能多的字符
# import re
# content='Hello 123 456 World_This is a Regex Demo'
#
# res=re.match('^He.*(\d+).*Demo$',content)
# print(res.group(1)) #只打印6,因为.*会尽可能多的匹配,然后后面跟至少一个数字
#非贪婪匹配:?匹配尽可能少的字符
# import re
# content='Hello 123 456 World_This is a Regex Demo'
#
# res=re.match('^He.*?(\d+).*Demo$',content)
# print(res.group(1)) #只打印6,因为.*会尽可能多的匹配,然后后面跟至少一个数字
#匹配模式:.不能匹配换行符
content='''Hello 123456 World_This
is a Regex Demo
'''
# res=re.match('He.*?(\d+).*?Demo$',content)
# print(res) #输出None
# res=re.match('He.*?(\d+).*?Demo$',content,re.S) #re.S让.可以匹配换行符
# print(res)
# print(res.group(1))
#转义:\
# content='price is $5.00'
# res=re.match('price is $5.00',content)
# print(res)
#
# res=re.match('price is \$5\.00',content)
# print(res)
#总结:尽量精简,详细的如下
# 尽量使用泛匹配模式.*
# 尽量使用非贪婪模式:.*?
# 使用括号得到匹配目标:用group(n)去取得结果
# 有换行符就用re.S:修改模式
#re.search:会扫描整个字符串,不会从头开始,找到第一个匹配的结果就会返回
# import re
# content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
#
# res=re.match('Hello.*?(\d+).*?Demo',content)
# print(res) #输出结果为None
#
# import re
# content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
#
# res=re.search('Hello.*?(\d+).*?Demo',content) #
# print(res.group(1)) #输出结果为
#re.search:只要一个结果,匹配演练,
import re
content='''
<tbody>
<tr id="4766303201494371851675" class="even "><td><div class="hd"><span class="num">1</span><div class="rk "><span class="u-icn u-icn-75"></span></div></div></td><td class="rank"><div class="f-cb"><div class="tt"><a href="/song?id=476630320"><img class="rpic" src="http://p1.music.126.net/Wl7T1LBRhZFg0O26nnR2iQ==/19217264230385030.jpg?param=50y50&quality=100"></a><span data-res-id="476630320" "
# res=re.search('',content)
# print(res.group(1))
#re.findall:找到符合条件的所有结果
# res=re.findall('',content)
# for i in res:
# print(i)
#re.sub:字符串替换
import re
content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
# content=re.sub('\d+','',content)
# print(content)
#用\1取得第一个括号的内容
#用法:将123与456换位置
# import re
# content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
#
# # content=re.sub('(Extra.*?)(\d+)(\s)(\d+)(.*?strings)',r'\1\4\3\2\5',content)
# content=re.sub('(\d+)(\s)(\d+)',r'\3\2\1',content)
# print(content)
# import re
# content='Extra strings Hello 123 456 World_This is a Regex Demo Extra strings'
#
# res=re.search('Extra.*?(\d+).*strings',content)
# print(res.group(1))
# import requests,re
# respone=requests.get('https://book.douban.com/').text
# print(respone)
# print('======'*1000)
# print('======'*1000)
# print('======'*1000)
# print('======'*1000)
# res=re.findall('.*?more-meta.*?author">(.*?)(.*?)(.*?)',respone,re.S)
# # res=re.findall('(.*?)(.*?)(.*?) .*?',respone,re.S)
#
#
# for i in res:
# print('%s %s %s %s' %(i[0].strip(),i[1].strip(),i[2].strip(),i[3].strip()))
import re
# 1、匹配密码,密码必须是由6位数字与字母组成,并且不能是纯数字也不能是纯字母
# 1.1 知识点:# ?!pattern,表示在没有配到pattern的字符串的前提下,再进行后续的正则表达式匹配,后续匹配仍然从被匹配字符串的头开始
# 1.2 答案:
print(re.search("(?!^[0-9]+$)(?!^[a-zA-Z]+$)^[0-9A-Za-z]{6}$","123asf").group()) # 123asf
# 1.3 解释:
# 上述正则的意思为:在匹配(?!^[0-9]+$)以及(?!^[a-zA-Z]+$)过后,如果字符串成功后在从头去匹配(?!^[a-zA-Z]+$),最终匹配完。
# 2、匹配密码,密码强度:强,必须包含大写,小写和数字,和特殊字符(!,@,#,%,&),且大于6位
# 2.1 知识点:# ?=pattern,表示在配到pattern的字符串的前提下,再进行后续的正则表达式匹配,后续匹配仍然从被匹配字符串的头开始
# 2.2 答案:
# while True:
# pwd = input("please your password: ").strip() # 比如输入:Aa3@adf123
# pwd_pattern= re.compile("(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[!@#%&])^([a-zA-Z0-9!@#%&]){6,}$")
# if pwd_pattern.search(pwd) is None:
# print("密码强度不够")
# else:
# break
# 2.3 解释:
# 上述正则表达式的意思:
#(1)首先是(?=.*[A-Z])匹配,.*表示密码中可以包含多个字符,[A-Z]代表密码中需要包含至少一个大写字母,注意一定不要去掉.*写成(?=[A-Z]),那样表示密码只能由一个字符组成,该字符是大写字母
#(2)其次是(?=.*[a-z])匹配,同上,确保密码中必须至少有一个小写字母
#(3)然后是(?=.*[0-9])匹配,同上,确保密码中必须至少有一个数字
#(4)然后是(?=.*[!@#%&])匹配,同上,,确保密码中必须至少有一个特殊符号!@#%&
#(5)最后是^([a-zA-Z0-9!@#%&]){6,}$,确保密码是由[a-zA-Z0-9!@#%&]字符构成,至少有6位
# 3、匹配email
# print(re.findall("(?:[a-zA-Z0-9]+)@(?:[0-9a-zA-Z]+).com","[email protected] [email protected]"))
# 4、匹配身份证
# your_id=input(">>: ").strip()
# print(re.findall("^([0-9]){17}([0-9]|X)$",your_id)) # 17个数字组成,最后一个字符可以是数字或X
# 5、匹配用户名,包含字母或者数字,且8位
# print(re.findall("^[0-9a-zA-Z]{8}$","egonlinh"))
# 5.1、要求输入的内容只能是汉字
# name=input('>>: ').strip()
# print(re.search(r'[\u4E00-\u9fa5]+',name))
# 6、取出字符串里的数字
# print(re.findall(r'\d+(?:\.\d+)?', 'sww123kw11.333e2lkd'))
# 7、取出所有负整数
# print(re.findall(r'-\d+', '-12,3,54,-13.11,64,-9')) # 错误答案
# print(re.findall(r'(?!-\d+\.\d+)-\d+', '-12,3,54,-13.11,64,-9')) # 正确答案
# 8、所有数字
# print(re.findall(r'\-?\d+(?:\.\d+)?', '-12.9,3.92,54.11,64,89,-9,-45.2'))
# 9、所有负数
# print(re.findall(r'\-\d+(?:\.\d+)?', '-12.9,3.92,54.11,64,89,-9,-45.2'))
# 10、所有的非负浮点数
print(re.findall(r'\d+\.\d+', '-12.9,3.92,54.11,64,89,-9,-45.2'))
# 11、
msg = """
中文名 贝拉克·侯赛因·奥巴马
外文名 Barack Hussein Obama II
别名 欧巴马
性 别 男
国籍 美国
民 族 德裔族
出生地 美国夏威夷州檀香山
出生日期 1961年8月4日
职 业政治家、律师、总统
毕业院校 哥伦比亚大学,哈佛大学
信 仰新教
主要成就 1996年伊利诺伊州参议员
主要成就 美国第56届、57届总统 2009年诺贝尔和平奖获得者 时代周刊年度风云人物2008、2011 任期内清除本·拉登
代表作品 《我相信变革》《我父亲的梦想》《无畏的希望》
所属政党美国民主党
血 型 AB型
学 院西方学院
妻 子 米歇尔·拉沃恩·奥巴马
"""
#外文名
print(re.findall("外文名 (.*)",msg))
#出生日期
print(re.findall('出生日期 (\d{4})年(\d+)月(\d+)日',msg))
#妻子姓名
print(re.findall('妻 子 (\S+)',msg))
正则表达式中(?:pattern)、(?=pattern)、(?!pattern)、(?<=pattern)和(?
下述表达式都是断言,不占用宽度
前面有,正向后发(?<=exp),放前面;
后面有,正向先行(?=exp),放后面;
前面无,反向后发(?
后面无,反向先行(?!exp),放后面。
例如
re.findall("egon(?=100|N)(?=N)N123","egonN123") # ['egonN123']
# 位置: 0 1 2 3 4 5 6 7
# 字符串:e g o n N 1 2 3
# 分析:
# 步骤1、正则表达式egon匹配到了字符串的位置3
然后连续进行两次断言匹配
# 步骤2、(?=100|N)从位置3作为起始匹配位置4的字符是否100或者N
# 步骤3、2成功后,继续匹配(?=N),因为?=patter不会吃字符,所以此时会重新回到步骤1所在位置3,然后继续匹配,匹配成功
# 步骤4、从位置3开始匹配N123
# 思考下述输出结果,为何会不同???:
re.findall("egon(?=100|N)(?=N)N123","egonN123")
re.findall("egon(?=100|N)(?=N)123","egonN123")
介绍
(pattern) : 匹配 pattern 并获取这一匹配,所获取的匹配可以从产生的 Matches 集合得到。
(?:pattern) :匹配 pattern 但不获取匹配结果,也就是说这是一个非获取匹配,不进行存储供以后使用。
(?=pattern) :正向预查,在任何匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。
共同点
(?:pattern) 与 (?=pattern)都匹配pattern,但不会把pattern结果放到Matches的集合中,即Matcher.group()不会匹配到(?;pattern)与(?=pattern)
区别
(?:pattern) 匹配得到的结果包含pattern,(?=pattern) 则不包含。如:
对字符串:"industry abc"的匹配结果:
industr(?:y|ies) —> “industry”
industr(?=y|ies) —> "industr"
是否消耗字符
(?:pattern) 消耗字符,下一字符匹配会从已匹配后的位置开始。
(?=pattern) 不消耗字符,下一字符匹配会从预查之前的位置开始。
即后者只预查,不移动匹配指针。如: