ssd_detect用训练好的模型识别图片中的类

 

用shell script语言完成大批量图片检测,并将结果(图片中所包含类别及其坐标)打印在txt文本内保存

用python语言完成单张图片检测,并将结果(图片中所包含类别及其坐标)以图片形式展示

用python语言完成多张图片检测,并将结果(图片中所包含类别及其坐标)以图片形式展示

用python语言完成大批量图片检测,并将结果(图片中所包含类别及其坐标)打印在txt文本内保存

 

方案一、用shell script语句调用ssd_detect.exe文件,完成大批量的图片定位检测

1、在你编译完caffe文件时,会有ssd_detect.exe(ssd_detect.bin)文件生成

ssd_detect用训练好的模型识别图片中的类_第1张图片

如果你是windows下用cmake编译的,文件路径应该是caffe-ssd-python-clear/examples/ssd/Release

如果你是Linux系统下直接编译的,文件路径应该在caffe-ssd/Build/x64/Release(不记得了,不对就自己搜搜)

2、接下来写一个shell script脚本(新建记事本,后缀名改为.sh)

ssd_detect用训练好的模型识别图片中的类_第2张图片

detect.sh文件如下

starttime=`date +'%Y-%m-%d %H:%M:%S'`

E:/workspace/caffe-ssd-gpu/examples/ssd/Release/ssd_detect.exe \
E:/workspace/DataProcessing2/deploy.prototxt \
E:/workspace/DataProcessing2/VGG_VOC0712_SSD_300x300_iter_4500.caffemodel \
E:/workspace/DataProcessing2/Img/work.txt | tee E:/workspace/DataProcessing2/worklog.txt

endtime=`date +'%Y-%m-%d %H:%M:%S'`
start_seconds=$(date --date="$starttime" +%s);
end_seconds=$(date --date="$endtime" +%s);
echo "run time: "$((end_seconds-start_seconds))"s"
read -p "Press any key to continue" var

starttime和endtime是用来计时的

tee | ./././.. 是将结果输出到txt文件里保存的

重要的就是中间那段语句,注意以下几点

ssd_detect.exe、deploy.prototxt、***.caffemodel文件路径正确

work.txt里包含着你批量处理的图片文件清单(包括路径)

ssd_detect用训练好的模型识别图片中的类_第3张图片

3、双击运行detect.sh文件,生成worklog.txt文件,包含文件名、检测类别、匹配程度、物体坐标

ssd_detect用训练好的模型识别图片中的类_第4张图片

 

方案二、用python实现单张或多张图片的定位检测

自己注意deploy.prototxt、labelmap_voc.prototxt、***.caffemodel文件以及待测图片的路径

1、python实现单张图片检测

# coding: utf-8
# # Detection with SSD

import numpy as np
import matplotlib.pyplot as plt
import pylab

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Make sure that caffe is on the python path:
caffe_root = 'E:/workspace/caffe-ssd-gpu/'  # this file is expected to be in {caffe_root}/examples
root = 'E:/workspace/DataProcessing4/'
import os
os.chdir(caffe_root)
import sys
sys.path.insert(0, 'python')

import caffe
#caffe.set_device(0)
#caffe.set_mode_gpu()
caffe.set_mode_cpu()

# * Load LabelMap.

from google.protobuf import text_format
from caffe.proto import caffe_pb2

# load PASCAL VOC labels
labelmap_file = root+'labelmap_voc.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)

def get_labelname(labelmap, labels):
    num_labels = len(labelmap.item)
    labelnames = []
    if type(labels) is not list:
        labels = [labels]
    for label in labels:
        found = False
        for i in xrange(0, num_labels):
            if label == labelmap.item[i].label:
                found = True
                labelnames.append(labelmap.item[i].display_name)
                break
        assert found == True
    return labelnames


# * Load the net in the test phase for inference, and configure input preprocessing.

model_def = root+'deploy.prototxt'
model_weights = root+'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel'

net = caffe.Net(model_def,      # defines the structure of the model
                model_weights,  # contains the trained weights
                caffe.TEST)     # use test mode (e.g., don't perform dropout)

# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104,117,123])) # mean pixel
transformer.set_raw_scale('data', 255)  # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0))  # the reference model has channels in BGR order instead of RGB


# ### 2. SSD detection

# * Load an image.

# set net to batch size of 1
image_resize = 300
net.blobs['data'].reshape(1,3,image_resize,image_resize)

image = caffe.io.load_image('E:/workspace/DataProcessing4/Img/2007_000925.jpg')
#plt.imshow(image)
#pylab.show()

# * Run the net and examine the top_k results

transformed_image = transformer.preprocess('data', image)
net.blobs['data'].data[...] = transformed_image

# Forward pass.
detections = net.forward()['detection_out']

# Parse the outputs.
det_label = detections[0,0,:,1]
det_conf = detections[0,0,:,2]
det_xmin = detections[0,0,:,3]
det_ymin = detections[0,0,:,4]
det_xmax = detections[0,0,:,5]
det_ymax = detections[0,0,:,6]

# Get detections with confidence higher than 0.6.
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6]

top_conf = det_conf[top_indices]
top_label_indices = det_label[top_indices].tolist()
top_labels = get_labelname(labelmap, top_label_indices)
top_xmin = det_xmin[top_indices]
top_ymin = det_ymin[top_indices]
top_xmax = det_xmax[top_indices]
top_ymax = det_ymax[top_indices]


# * Plot the boxes

colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()

plt.imshow(image)
currentAxis = plt.gca()

for i in xrange(top_conf.shape[0]):
    xmin = int(round(top_xmin[i] * image.shape[1]))
    ymin = int(round(top_ymin[i] * image.shape[0]))
    xmax = int(round(top_xmax[i] * image.shape[1]))
    ymax = int(round(top_ymax[i] * image.shape[0]))
    score = top_conf[i]
    label = int(top_label_indices[i])
    label_name = top_labels[i]
    display_txt = '%s: %.2f'%(label_name, score)
    coords = (xmin, ymin), xmax-xmin+1, ymax-ymin+1
    color = colors[label]
    currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
    currentAxis.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5})

pylab.show()

检测效果

ssd_detect用训练好的模型识别图片中的类_第5张图片

ssd_detect用训练好的模型识别图片中的类_第6张图片

2、python实现多张图片检测

#coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
import pylab

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Make sure that caffe is on the python path:
root = 'E:/workspace/DataProcessing4/'
import os
os.chdir(root)

import caffe
#caffe.set_device(0)
#caffe.set_mode_gpu()
caffe.set_mode_cpu()

# * Load LabelMap.

# In[ ]:


from google.protobuf import text_format
from caffe.proto import caffe_pb2

# load PASCAL VOC labels
labelmap_file = root+'labelmap_voc.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)

def get_labelname(labelmap, labels):
    num_labels = len(labelmap.item)
    labelnames = []
    if type(labels) is not list:
        labels = [labels]
    for label in labels:
        found = False
        for i in xrange(0, num_labels):
            if label == labelmap.item[i].label:
                found = True
                labelnames.append(labelmap.item[i].display_name)
                break
        assert found == True
    return labelnames


# * Load the net in the test phase for inference, and configure input preprocessing.

# In[3]:


model_def = root+'deploy.prototxt'
model_weights = root+'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel'

net = caffe.Net(model_def,      # defines the structure of the model
                model_weights,  # contains the trained weights
                caffe.TEST)     # use test mode (e.g., don't perform dropout)

# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104,117,123])) # mean pixel
transformer.set_raw_scale('data', 255)  # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0))  # the reference model has channels in BGR order instead of RGB

colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
# ### 2. SSD detection

# * Load an image.

# In[4]:
dir=root+'Img/'
filelist=[]
filenames=os.listdir(dir)  #返回指定目录下的所有文件和目录名
for fn in filenames:
    fullfilename=os.path.join(dir,fn) #os.path.join--拼接路径
    filelist.append(fullfilename) #filelist里存储每个图片的路径

# set net to batch size of 1
image_resize = 300
net.blobs['data'].reshape(1,3,image_resize,image_resize)

for j in range(0,len(filelist)):
    img=filelist[j]   #获取当前图片的路径
    image = caffe.io.load_image(img)

# * Run the net and examine the top_k results

# In[5]:


    transformed_image = transformer.preprocess('data', image)
    net.blobs['data'].data[...] = transformed_image

# Forward pass.
    detections = net.forward()['detection_out']

# Parse the outputs.
    det_label = detections[0,0,:,1]
    det_conf = detections[0,0,:,2]
    det_xmin = detections[0,0,:,3]
    det_ymin = detections[0,0,:,4]
    det_xmax = detections[0,0,:,5]
    det_ymax = detections[0,0,:,6]

# Get detections with confidence higher than 0.6.
    top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6]

    top_conf = det_conf[top_indices]
    top_label_indices = det_label[top_indices].tolist()
    top_labels = get_labelname(labelmap, top_label_indices)
    top_xmin = det_xmin[top_indices]
    top_ymin = det_ymin[top_indices]
    top_xmax = det_xmax[top_indices]
    top_ymax = det_ymax[top_indices]
        
# * Plot the boxes

# In[6]:


    plt.imshow(image)
    currentAxis = plt.gca()

    for i in xrange(top_conf.shape[0]):
        xmin = int(round(top_xmin[i] * image.shape[1]))
        ymin = int(round(top_ymin[i] * image.shape[0]))
        xmax = int(round(top_xmax[i] * image.shape[1]))
        ymax = int(round(top_ymax[i] * image.shape[0]))
        score = top_conf[i]
        label = int(top_label_indices[i])
        label_name = top_labels[i]
        display_txt = '%s: %.2f'%(label_name, score)
        coords = (xmin, ymin), xmax-xmin+1, ymax-ymin+1
        color = colors[label]
        currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
        currentAxis.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5})

    pylab.show()

每显示一张图片,手动关闭后会自动打开下一张图片

3、python实现大批量图片检测,并将检测结果写入txt文件保存

#coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
import pylab

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Make sure that caffe is on the python path:
root = 'E:/workspace/DataProcessing4/'
import os
os.chdir(root)

import caffe
#caffe.set_device(0)
#caffe.set_mode_gpu()
caffe.set_mode_cpu()

# * Load LabelMap.

# In[ ]:


from google.protobuf import text_format
from caffe.proto import caffe_pb2

# load PASCAL VOC labels
labelmap_file = root+'labelmap_voc.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)

def get_labelname(labelmap, labels):
    num_labels = len(labelmap.item)
    labelnames = []
    if type(labels) is not list:
        labels = [labels]
    for label in labels:
        found = False
        for i in xrange(0, num_labels):
            if label == labelmap.item[i].label:
                found = True
                labelnames.append(labelmap.item[i].display_name)
                break
        assert found == True
    return labelnames


# * Load the net in the test phase for inference, and configure input preprocessing.

# In[3]:


model_def = root+'deploy.prototxt'
model_weights = root+'VGG_VOC0712_SSD_300x300_iter_120000.caffemodel'

net = caffe.Net(model_def,      # defines the structure of the model
                model_weights,  # contains the trained weights
                caffe.TEST)     # use test mode (e.g., don't perform dropout)

# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104,117,123])) # mean pixel
transformer.set_raw_scale('data', 255)  # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0))  # the reference model has channels in BGR order instead of RGB


# ### 2. SSD detection

# * Load an image.

# In[4]:
dir=root+'Img/'
filelist=[]
filenames=os.listdir(dir)  #返回指定目录下的所有文件和目录名
for fn in filenames:
    fullfilename=os.path.join(dir,fn) #os.path.join--拼接路径
    filelist.append(fullfilename) #filelist里存储每个图片的路径

# set net to batch size of 1
image_resize = 300
net.blobs['data'].reshape(1,3,image_resize,image_resize)

with open(root+'results.txt', 'w')as f:
    for j in range(0,len(filelist)):
        img=filelist[j]   #获取当前图片的路径
        image = caffe.io.load_image(img)

# * Run the net and examine the top_k results

# In[5]:


        transformed_image = transformer.preprocess('data', image)
        net.blobs['data'].data[...] = transformed_image

# Forward pass.
        detections = net.forward()['detection_out']

# Parse the outputs.
        det_label = detections[0,0,:,1]
        det_conf = detections[0,0,:,2]
        det_xmin = detections[0,0,:,3]
        det_ymin = detections[0,0,:,4]
        det_xmax = detections[0,0,:,5]
        det_ymax = detections[0,0,:,6]

# Get detections with confidence higher than 0.6.
        top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6]

        top_conf = det_conf[top_indices]
        top_label_indices = det_label[top_indices].tolist()
        top_labels = get_labelname(labelmap, top_label_indices)
        top_xmin = det_xmin[top_indices]
        top_ymin = det_ymin[top_indices]
        top_xmax = det_xmax[top_indices]
        top_ymax = det_ymax[top_indices]
        
        for k in range(len(top_labels)):
            f.write('{} --class:{}  --locate:{} {} {} {}\n'.format(filenames[j],
                                                              top_labels[k],
                                                              top_xmin[k],
                                                              top_ymin[k],
                                                              top_xmax[k],
                                                              top_ymax[k]))

效果展示——

图片名  --class:类名   --locate:xmin ymin xmax ymax

ssd_detect用训练好的模型识别图片中的类_第7张图片

你可能感兴趣的:(caffe)