You come home and fell some unpleasant smell. Where is it coming from?
You are given an array a. You have to answer the following queries:
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.
Note that in this problem all elements of a are positive, which means that c0 = 0 and 0 is never the answer for the query of the second type.
Input
The first line of input contains two integers n and q (1 ≤ n, q ≤ 100 000) — the length of the array and the number of queries respectively.
The second line of input contains n integers — a1, a2, ..., an (1 ≤ ai ≤ 109).
Each of the next q lines describes a single query.
The first type of query is described by three integers ti = 1, li, ri, where 1 ≤ li ≤ ri ≤ n — the bounds of the subarray.
The second type of query is described by three integers ti = 2, pi, xi, where 1 ≤ pi ≤ n is the index of the element, which must be changed and 1 ≤ xi ≤ 109 is the new value.
Output
For each query of the first type output a single integer — the Mex of {c0, c1, ..., c109}.
Example
input
10 4 1 2 3 1 1 2 2 2 9 9 1 1 1 1 2 8 2 7 1 1 2 8
output
2 3 2
Note
The subarray of the first query consists of the single element — 1.
The subarray of the second query consists of four 2s, one 3 and two 1s.
The subarray of the fourth query consists of three 1s, three 2s and one 3.
题意:给一个长度为 n 的数组,有询问和单点修改操作。每个询问给定 l 和 r,设 al 到 ar 中的数出现的次数为序列 c,设标准的序列 c 为 1,2,3,4,5,6,...,n,输出第一个不连续的数。修改 p 位置的值为 x
思路:首先是,你需要知道 带修莫队的复杂度 ,这里 n 为 1e5,算出来大概是 2e8 的复杂度,所以莫队的相关操作 只能是O(1)的,那么对于 数组 以及修改的值,都需要提前全部处理好。
而对于答案,则可以暴力求。把答案设为最大,则该数列至少含 ans * (ans - 1) / 2个元素,由于序列长度在1e5的范围,则ans < 448,所以暴力求是没问题的。。
故需要做的:记录每个数出现的次数,以及每个次数出现的次数即可。!注意:由于出现次数会作为下标,莫队的del 的值是可能为负数的,所以需要先扩大范围,再缩小范围。 对于出现次数,最大出现次数不止 1e5,空间最好开大一些。
Code:
#include
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define ull unsigned LL
#define ls i << 1
#define rs (i << 1) + 1
#define fi first
#define se second
#define CLR(a) while(!(a).empty()) a.pop()
using namespace std;
const int maxn = 1e5 + 10;
int n,q,Ls[maxn * 2],en;
int belong[maxn],a[maxn];
int ans[maxn],Ans = 1;
int cnt1[maxn * 2];
int cnt2[maxn * 2];
struct xx{
int l,r,id,time;
}Q[maxn];
struct change{
int pos,val;
}cge[maxn];
inline int read() {
int X = 0, w = 0;
char ch = 0;
while(!isdigit(ch)) {
w |= ch == '-';
ch = getchar();
}
while(isdigit(ch))
X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
bool cmp(xx A,xx B){
if(belong[A.l] != belong[B.l])
return belong[A.l] < belong[B.l];
if(belong[A.r] != belong[B.r])
return belong[A.r] < belong[B.r];
return A.time < B.time;
}
void add(int x){
-- cnt2[cnt1[a[x]]];
++ cnt1[a[x]];
++ cnt2[cnt1[a[x]]];
}
void del(int x){
-- cnt2[cnt1[a[x]]];
-- cnt1[a[x]];
++ cnt2[cnt1[a[x]]];
}
void update(int i,int _time){
if(Q[i].l <= cge[_time].pos && cge[_time].pos <= Q[i].r)
del(cge[_time].pos);
swap(a[cge[_time].pos],cge[_time].val);
if(Q[i].l <= cge[_time].pos && cge[_time].pos <= Q[i].r)
add(cge[_time].pos);
}
int main() {
//#ifndef ONLINE_JUDGE
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
//#endif
int n = read(),m = read();
int block = pow(n,2.0 / 3);
for(int i = 1;i <= n;++ i){
a[i] = read();
Ls[++ en] = a[i];
belong[i] = (i - 1) / block + 1;
}
int tmp = 0,pq = 0;
for(int i = 1;i <= m;++ i){
int op = read();
if(op == 1){
Q[++ pq].l = read(); Q[pq].r = read();
Q[pq].id = pq; Q[pq].time = tmp;
}
else {
cge[++ tmp].pos = read();
cge[tmp].val = read();
Ls[++ en] = cge[tmp].val;
}
}
sort(Ls + 1,Ls + 1 + en);
en = unique(Ls + 1,Ls + 1 + en) - Ls - 1;
for(int i = 1;i <= n;++ i)
a[i] = lower_bound(Ls + 1,Ls + 1 + en,a[i]) - Ls;
for(int i = 1;i <= tmp;++ i)
cge[i].val = lower_bound(Ls + 1,Ls + 1 + en,cge[i].val) - Ls;
sort(Q + 1,Q + 1 + pq,cmp);
int L = 1,R = 0,_time = 0;
for(int i = 1;i <= pq;++ i){
while(L > Q[i].l) add(-- L);
while(R < Q[i].r) add(++ R);
while(L < Q[i].l) del(L ++);
while(R > Q[i].r) del(R --);
while(_time < Q[i].time) update(i,++ _time);
while(_time > Q[i].time) update(i,_time --);
ans[Q[i].id] = 1;
while(cnt2[ans[Q[i].id]])
++ ans[Q[i].id];
}
for(int i = 1;i <= pq;++ i)
printf("%d\n",ans[i]);
return 0;
}