29muduo_net库源码分析(五)

1.进程(线程)wait/notify

(1)pipe
(2)socketpair
(3)eventfd,eventfd是一个比 pipe更高效的线程间事件通知机制,一方面它比 pipe 少用一个file descripor,节省了资源;另一方面,eventfd的缓冲区管理也简单得多,全部“buffer”只有定长8 bytes,不像 pipe 那样可能有不定长的真正buffer。
int createEventfd()
{
  int evtfd = ::eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
  if (evtfd < 0)
  {
    LOG_SYSERR << "Failed in eventfd";
    abort();
  }
  return evtfd;
}

}

void EventLoop::wakeup()
{
  uint64_t one = 1;
  //ssize_t n = sockets::write(wakeupFd_, &one, sizeof one);
  ssize_t n = ::write(wakeupFd_, &one, sizeof one);
  if (n != sizeof one)
  {
    LOG_ERROR << "EventLoop::wakeup() writes " << n << " bytes instead of 8";
  }
}

void EventLoop::handleRead()
{
  uint64_t one = 1;
  //ssize_t n = sockets::read(wakeupFd_, &one, sizeof one);
  ssize_t n = ::read(wakeupFd_, &one, sizeof one);
  if (n != sizeof one)
  {
    LOG_ERROR << "EventLoop::handleRead() reads " << n << " bytes instead of 8";
  }
}


2.流程图

29muduo_net库源码分析(五)_第1张图片

29muduo_net库源码分析(五)_第2张图片

(1)调用queueInLoop的线程不是当前IO线程需要唤醒

(2)或者调用queueInLoop的线程是当前IO线程,并且此时正在调用pendingfunctor,需要唤醒(也就是当前IO线程执行doPendingFunctors时候,调用了queueInLoop)

(3)只有IO线程的事件回调中调用queueInLoop才不需要唤醒


3.代码

1.EventLoop::runInLoop

// 在I/O线程中执行某个回调函数,该函数可以跨线程调用
void EventLoop::runInLoop(const Functor& cb)
{
  if (isInLoopThread())
  {
    // 如果是当前IO线程调用runInLoop,则同步调用cb
    cb();
  }
  else
  {
    // 如果是其它线程调用runInLoop,则异步地将cb添加到队列
    queueInLoop(cb);
  }
}


2.EventLoop::queueInLoop

void EventLoop::queueInLoop(const Functor& cb)
{
  {
  MutexLockGuard lock(mutex_);
  pendingFunctors_.push_back(cb);
  }
  // 调用queueInLoop的线程不是当前IO线程需要唤醒
  // 或者调用queueInLoop的线程是当前IO线程,并且此时正在调用pending functor,需要唤醒
  // 只有当前IO线程的事件回调中调用queueInLoop才不需要唤醒
  if (!isInLoopThread() || callingPendingFunctors_)
  {
    wakeup();
  }
}

3.EventLoop:loop

 while (!quit_)
  {
    activeChannels_.clear();
    pollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_);
    if (Logger::logLevel() <= Logger::TRACE)
    {
      printActiveChannels();
    }
    eventHandling_ = true;
    for (ChannelList::iterator it = activeChannels_.begin();
        it != activeChannels_.end(); ++it)
    {
      currentActiveChannel_ = *it;
      currentActiveChannel_->handleEvent(pollReturnTime_);
    }
    currentActiveChannel_ = NULL;
    eventHandling_ = false;
    doPendingFunctors();
  }

4.EventLoop::doPendingFunctors

void EventLoop::doPendingFunctors()
{
  std::vector functors;
  callingPendingFunctors_ = true;

  {
  MutexLockGuard lock(mutex_);
  functors.swap(pendingFunctors_);
  }

  for (size_t i = 0; i < functors.size(); ++i)
  {
    functors[i]();
  }
  callingPendingFunctors_ = false;
}

(1)不是简单地在临界区内依次调用Functor,而是把回调列表swapfunctors中,这样一方面减小了临界区的长度(意味着不会阻塞其它线程的queueInLoop()),另一方面,也避免了死锁(因为Functor可能再次调用queueInLoop()

(2)由于doPendingFunctors()调用的Functor可能再次调用queueInLoop(cb),这时,queueInLoop()就必须wakeup(),否则新增的cb可能就不能及时调用了

(2)muduo没有反复执行doPendingFunctors()直到pendingFunctors为空,这是有意的,否则IO线程可能陷入死循环,无法处理IO事件。


4.测试

#include 
//#include 
//#include 

#include 

using namespace muduo;
using namespace muduo::net;

EventLoop* g_loop;
int g_flag = 0;

void run4()
{
  printf("run4(): pid = %d, flag = %d\n", getpid(), g_flag);
  g_loop->quit();
}

void run3()
{
  printf("run3(): pid = %d, flag = %d\n", getpid(), g_flag);
  g_loop->runAfter(3, run4);
  g_flag = 3;
}

void run2()
{
  printf("run2(): pid = %d, flag = %d\n", getpid(), g_flag);
  g_loop->queueInLoop(run3);
}

void run1()
{
  g_flag = 1;
  printf("run1(): pid = %d, flag = %d\n", getpid(), g_flag);
  g_loop->runInLoop(run2);
  g_flag = 2;
}

int main()
{
  printf("main(): pid = %d, flag = %d\n", getpid(), g_flag);

  EventLoop loop;
  g_loop = &loop;

  loop.runAfter(2, run1);
  loop.loop();
  printf("main(): pid = %d, flag = %d\n", getpid(), g_flag);
}


你可能感兴趣的:(muduo大并发服务器)