【Python、C++、R 三合一效果好】Julia 重磅发布,全球热度上升最快

IT派助力深广创业,免费代发招聘信息,了解一下?


近年来,Julia 语言已然成为编程界的新宠。这门由 MIT CSAIL 实验室开发的编程语言结合了 C 语言的速度、Ruby 的灵活、Python 的通用性,以及其他各种语言的优势于一身,并且具有开源、简单易掌握的特点,大有潜力成为取代 Python 的下一个语言。


8 日,Julia 正式发布 1.0 版本。Julia 团队表示:“Julia 1.0 版本是我们为如饥似渴的程序员构建一种全新语言数十年来工作成果的巅峰。” 那么问题来了,Julia 真有这么神?你做好学习一门新编程语言的准备了吗?


为什么你应该学习 Julia?


从 2012 年到现在,Julia 1.0 在编程界已经打出了自己的一片 “小天地”。截至发稿前,Julia 在 Github 上已经获得了 12293 颗星星,TOIBE8 月份编程语言排行榜上已迅速攀升至第 50 名。


【Python、C++、R 三合一效果好】Julia 重磅发布,全球热度上升最快_第1张图片


Julia 之所以这么受欢迎,这与它解决了工程师们一个 “坑爹” 问题有关:工程师们为了在数据分析中获得速度和易用性,不得不首先用一种语言编码,然后用另一种语言重写,即很多人口中的“双语言问题”。


与其他语言相比,Julia 易于使用,大幅减少了需要写的代码行数;并且能够很容易地部署于云容器,有更多的工具包和库,并且结合了多种语言的优势。据 Julia Computing 的宣传,在七项基础算法的测试中,Julia 比 Python 快 20 倍,比 R 快 100 倍,比 Matlab 快 93 倍


目前 Julia 的应用范围已经非常广泛了,可以用于天文图像分析、自动驾驶汽车、机器人和 3D 打印机、精准医疗、增强现实、基因组学和风险管理等领域。

两年前,诺贝尔经济学奖得主 Thomas Sargent 和澳大利亚国立大学的经济学教授 John Stachurski,共同建议纽约联邦储备银行把其用于市场走势预测和政策分析的 “动态随机一般均衡模型(DSGE)” 转到 Julia 语言平台。在项目第一阶段后,他们发现,Julia 把模型运行时间缩短至原先 Matlab 代码的十分之一到四分之三。


除了语言本身的优点,Julia 还拥有非常强大的生态系统,主要应用于数据可视化、通用计算、数据科学、机器学习、科学领域、并行计算六大领域。


【Python、C++、R 三合一效果好】Julia 重磅发布,全球热度上升最快_第2张图片


Julia 在规模化机器学习领域为深度学习、机器学习和 AI 提供了强大的工具(Flux 和 Knet)。Julia 的数学语法使其成为表达算法的理想方式,支持构建具有自动差异的可训练模型,支持 GPU 加速和处理数 TB 的数据。Julia 丰富的机器学习生态系统还提供监督学习算法(如回归、决策树)、无监督学习算法(如聚类)、贝叶斯网络和马尔可夫链蒙特卡罗包等。


Julia 目前下载量已经达到了 200 万次,Julia 社区开发了超过 1900 多个扩展包。这些扩展包包含各种各样的数学库、数学运算工具和用于通用计算的库。除此之外,Julia 语言还可以轻松使用 Python、R、C/C++ 和 Java 中的库,这极大地扩展了 Julia 语言的使用范围。


所以说,Julia 火起来不是没有原因的,而最新发布的 1.0 版本又添加了很多新功能。


按例,先贴上新版本相关链接:

Julia 1.0 试用版链接:

https://julialang.org/downloads/

GitHub 地址:https://github.com/JuliaLang/julia


目前支持 Julia 的平台:

【Python、C++、R 三合一效果好】Julia 重磅发布,全球热度上升最快_第3张图片


Julia 到底是怎样一门语言?


Julia 首次公开面世时便体现出该社区对语言的一些强烈要求:


我们想要一种拥有自由许可的开源语言。我们想要它拥有 C 的速度与 Ruby 的灵活。它要容易理解,像 Lisp 一样真正地支持宏,但也要有像 Matlab 一样的明显、熟悉的数学符号。它还要像 Python 一样可用于通用编程,像 R 一样易于统计,像 Perl 一样可自然地用于字符串处理,像 Matlab 一样擅长线性代数,像 shell 一样擅长将程序粘合在一起。总之,它既要简单易学,但也要让最严肃的黑客开心。我们既希望它是交互式,也希望它是可编译的。


现在,一个充满活力和蓬勃发展的社区围绕着这种语言成长起来,来自世界各地的人们在追求这一目标的过程中不断地精炼并重塑着 Julia。超过 700 人为 Julia 做出了贡献,还有很多人制作了数以千计的令人惊叹的开源 Julia 软件包。


总而言之,我们建立的语言:  

  • 快速:Julia 就是为高性能而设计的。Julia 程序通过 LLVM 编译为多个平台的高效本机代码。

  • 通用:它使用多个调度作为范例,使得它很容易表达众多面向对象和函数编程的模式。它的标准库提供异步 I / O、进程控制、日志记录、概要分析、软件包管理器等。

  • 动态:Julia 是动态类型的,就像一种脚本语言,并且很好地支持交互式使用。

  • 技术:它擅长于数值计算,其语法非常适合数学,支持的数字数据类型众多,并具有开箱即用并行性。Julia 的多次调度非常适合定义数字和数组类型的数据类型。

  • (可选)键入:Julia 具有丰富的描述性数据类型语言,类型声明可用于阐明和巩固程序。

  • 可组合:Julia 的软件包可以很好地协同工作。单位数量矩阵,货币和颜色数据表都可以进行,并且性能良好。


如果你要从 Julia 0.6 或更早版本升级代码,我们建议首先使用过渡版 0.7,其中包括弃用警告帮助指导完成升级。如果你的代码没有警告,则可以更改为 1.0 而无需任何功能更改。已注册的软件包正在使用该过渡版本发布 1.0 兼容的更新。


1.0 更新了哪些功能?




备受期待的 Julia1.0 累积了开发者近十年的努力。JuliaCon2018 举行了发布会,该社区正式将该版本设置为 1.0.0.。


Julia 开发者对该语言提出了很多需求:


我们想要一种十分自由的开源语言,同时兼具 C 语言的速度和 Ruby 语言的灵活度。我们想要一种同像性语言,具有像 Lisp 一样真正的宏,也有像 Maltlab 一样浅显易懂的数学符号。它是像 Python 一样有用的通用编程语言,像 R 语言一样便于统计的语言,像 Perl 一样自然的字符串处理语言,像 Matlab 一样强大的线性代数语言,也是像 shell 一样的「胶水语言」。它简单易学,却能让严苛的黑客们为之倾心。我们希望它兼具交互性和可编译性。


围绕这一语言,一个欣欣向荣的社区已经蓬勃发展起来,为了同一目标,世界各地的人们不断地重塑并改进着 Julia。超过 700 人对 Julia 做出了实质性贡献,更有不计其数的人制造了数千个惊人的 Julia 开源包。总之,我们构建了一种这样的语言:


  • 快速:Julia 为高性能而生。Julia 程序通过 LLVM 为多个平台编译高效的本地代码。

  • 通用:它使用多分派作为范例,使得表达许多面向对象和函数式的编程模式变得容易。标准库提供异步 I/O、进程控制、日志记录、性能分析、包管理器等。

  • 动态:Julia 是动态型语言,与脚本语言类似,并且支持交互式使用。

  • 专业:它擅长数值计算,其语法适用于数学,支持多种数值数据类型,并具有良好并行性。Julia 的多分派天生适合定义数字和类数组的数据类型。

  • 多样:Julia 拥有丰富的描述性数据类型,类型声明使程序条理清晰且稳定。

  • 可组合:Julia 的包可以很好地组合在一起。单位数量的矩阵,或者货币和颜色的数据列表,都可以组合——而且性能很好。


现在 Julia 1.0 版本已经可以下载了。如果你从 Julia 0.6 或更早的版本升级代码,我们建议你首先使用过渡版本 0.7,它包含了弃用警告,可以帮助引导升级过程。如果你的代码没有警告,那么你就可以直接变更到 1.0 版本而不会产生任何功能性的改变。已注册软件包正利用 0.7 这个过渡版本,并发布了 1.0 的兼容更新。


当然,Julia 1.0 中最重要的一个新特征是对语言 API 稳定性的承诺:为 Julia 1.0 编写的代码可以继续在 Julia 1.1、1.2 等版本上使用。该语言是「完全成熟的」,核心语言开发者和社区都可以基于这个坚实的基础构建新的包、工具和特征。


Julia 1.0 不仅涉及稳定性,还引入了多种新的强大、创新性语言功能。自 0.6 版本以来的新功能如下,更多详细与准确的内容请查看更新文档原文:


  • 一种全新的内置程序包管理器给 Julia 1.0 带来巨大的性能提升,并令其相比以往更容易进行程序包和依赖库安装。它还支持每项目(per-project)的包环境,并记录工作应用的明确状态来和其他人(以及你的未来项目)共享。最后,该新设计还完全支持私人包和软件包存储库。你可以使用相同的工具安装和管理你用于开源包生态系统的私人包。JuliaCon 的展示视频对新设计和行为提供了很好的概述。

  • Julia 拥有对缺失值的新的标准表示。允许表示和处理缺失数据对于统计和数据科学来说是很基础的。在典型的 Julia 编程形式中,新的解决方案是通用的、可组合的和高性能的。任何泛用群集类型可以高效地支持缺失值,仅需要允许元素包含预定义值 missing。这种「统一类型化」的群集的性能在过去版本中可能会非常慢,但如今的编译器改进已经允许 Julia 在其它系统中匹配自定义 C 或 C++的缺失值表示的速度,同时在通用性和灵活性上也远远超越过去的版本。

  • 内置的 String 类型现在可以安全地支持任意数据。你的程序不会在一项工作中因为无效 Unicode 的单个丢失字节就浪费数小时或数天的时间。所有的字符串数据在指示哪些字符是有效或无效的同时就已经被保存,允许你的应用安全、方便地处理包含所有不可避免瑕疵的真实世界数据。

  • 广播(broadcasting)由于方便的语法特性已经成为了一种核心的语言功能,并且已经比过去更加强大。在 Julia 1.0 中,可以很简单地将广播扩展到自定义类型,并在 GPU 和其它向量化硬件上实现高效的优化计算,为未来更高的性能效益奠定了基础。

  • 命名元数组是一种新的语言功能,可以通过命名使数据表示和访问更加高效和方便。例如,你可以将一行数据表示为 row = (name="Julia", version=v"1.0.0", releases=8),并使用 row.version 来访问 version 列,它与不那么便利的 row [2] 有相同的性能。

  • 点运算符现在可以重载,并允许类型使用 obj.property 句法获取除 getting 和 setting 结构域外的含义。这对于使用 Python 和 Java 等面向对象语言之间更加平滑的交互操作非常有用。属性访问器重载还允许获取一列数据的语法匹配命名元组的语法:你可以编写 table.version 以访问表中的 version 列,这就和使用 row.version 访问行的 version 字段一样。

  • Julia 优化器在很多方面比我们列出来的特征还要优秀,但这里只会提一些亮点。优化器现在可以通过函数调用传播常数,因此比以前能更好地消除无用代码和实现静态评估。编译器在避免为长期目标分配短期包装器方面也做得更好,这使得开发者能使用便捷的高级抽象并且不会产生性能损失。

  • 现在可以用声明参数类型的构造函数的方式调用它们自己,这消除了语言句法中令人困惑且模糊的地方。

  • 完全重新设计迭代协议,使之更易实现多种可迭代量。Julia 1.0 没有设计三种不同泛型函数(start、next、done)的方法,而是设计 iterate 函数的一参数和二参数方法。这通常允许在开始状态使用包含默认值的单一定义来便捷地定义迭代。更重要的是,这使得实现只在尝试并无法生成值后才知道它们已经被实施过的迭代器成为可能。这些迭代器在输入/输出(I/O)、网络和生产者/消费者模式中是非常普遍的,Julia 可以用一种直接、准确的方式表达这些迭代器。

  • 作用域规则(scope rule)被简化。局部作用域的结构现在可以一致地进行使用,不用管某命名的全局约束是否已经存在。

  • Julia 语言本身是非常好的学习器,很多组件被分割封装进 Julia 的「标准库」包,而不是作为「基础」语言的一部分。如果你需要它们,可以导入它们(无需安装)。未来,标准库还将出现多种版本,并独立于 Julia 更新,这使得它们可以更快地迭代。

  • 我们已经对 Julia 的所有 API 进行了完全的评议,以改善稳定性和可用性。对很多模糊的已有命名和无效的编程模式进行了重命名或重构,使之更匹配 Julia 的能力。这使得处理集合更加稳定和一致,以确保参数顺序遵循 Julia 语言中一贯的标准,并在恰当的情况下将(更快的)关键词参数整合进 API。


现在围绕 Julia 1.0 的新功能专门构建了许多新的外部软件包,如数据处理和操作生态系统的改进和异构架构支持的改进等。


∞∞∞

640?wx_fmt=jpeg&wx_lazy=1

IT派 - {技术青年圈} 持续关注互联网、区块链、人工智能领域 640?wx_fmt=jpeg


公众号回复“IT派”

邀你加入IT派 { 技术交流群 } 

你可能感兴趣的:(【Python、C++、R 三合一效果好】Julia 重磅发布,全球热度上升最快)