Python数据结构与算法-Day7-树与树算法

文章目录

  • 树的概念
    • 树的术语
    • 树的种类
    • 树的存储与表示
      • 顺序存储
      • 链式存储
      • 常见的一些树的应用场景
  • 二叉树
    • 二叉树的基本概念
    • 二叉树的性质(特性)
    • 二叉树的节点表示以及树的创建
    • 二叉树的遍历
      • 深度优先遍历
        • 先序遍历
        • 中序遍历
        • 后序遍历
      • 广度优先遍历(层次遍历)

树的概念

树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

每个节点有零个或多个子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;
除了根节点外,每个子节点可以分为多个不相交的子树;
Python数据结构与算法-Day7-树与树算法_第1张图片

树的术语

Python数据结构与算法-Day7-树与树算法_第2张图片

树的种类

Python数据结构与算法-Day7-树与树算法_第3张图片

树的存储与表示

顺序存储

Python数据结构与算法-Day7-树与树算法_第4张图片

链式存储

Python数据结构与算法-Day7-树与树算法_第5张图片

常见的一些树的应用场景

Python数据结构与算法-Day7-树与树算法_第6张图片

二叉树

二叉树的基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)

二叉树的性质(特性)

Python数据结构与算法-Day7-树与树算法_第7张图片
Python数据结构与算法-Day7-树与树算法_第8张图片

二叉树的节点表示以及树的创建

通过使用Node类中定义三个属性,分别为elem本身的值,还有lchild左孩子和rchild右孩子

class Node(object):
    """节点类"""
    def __init__(self, elem=-1, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild

树的创建,创建一个树的类,并给一个root根节点,一开始为空,随后添加节点

class Tree(object):
    """树类"""
    def __init__(self, root=None):
        self.root = root

    def add(self, elem):
        """为树添加节点"""
        node = Node(elem)
        #如果树是空的,则对根节点赋值
        if self.root == None:
            self.root = node
        else:
            queue = []
            queue.append(self.root)
            #对已有的节点进行层次遍历
            while queue:
                #弹出队列的第一个元素
                cur = queue.pop(0)
                if cur.lchild == None:
                    cur.lchild = node
                    return
                elif cur.rchild == None:
                    cur.rchild = node
                    return
                else:
                    #如果左右子树都不为空,加入队列继续判断
                    queue.append(cur.lchild)
                    queue.append(cur.rchild)

二叉树的遍历

树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

先序遍历

在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树

def preorder(self, root):
      """递归实现先序遍历"""
      if root == None:
          return
      print root.elem
      self.preorder(root.lchild)
      self.preorder(root.rchild)

中序遍历

在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树

def inorder(self, root):
      """递归实现中序遍历"""
      if root == None:
          return
      self.inorder(root.lchild)
      print root.elem
      self.inorder(root.rchild)

后序遍历

在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点

def postorder(self, root):
      """递归实现后续遍历"""
      if root == None:
          return
      self.postorder(root.lchild)
      self.postorder(root.rchild)
      print root.elem

Python数据结构与算法-Day7-树与树算法_第9张图片

广度优先遍历(层次遍历)

从树的root开始,从上到下从从左到右遍历整个树的节点

def breadth_travel(self, root):
        """利用队列实现树的层次遍历"""
        if root == None:
            return
        queue = []
        queue.append(root)
        while queue:
            node = queue.pop(0)
            print node.elem,
            if node.lchild != None:
                queue.append(node.lchild)
            if node.rchild != None:
                queue.append(node.rchild)

你可能感兴趣的:(Python数据结构与算法-Day7-树与树算法)