- FFMPEG音视频开发: Linux下采集音频(alsa-lib库)与视频(V4L2框架)实时同步编码保存为MP4文件(视频录制)
鱼弦
音视频开发系列实践ffmpeg音视频linux
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)FFMPEG音视频开发:Linux下采集音频(alsa-lib库)与视频(V4L2框架)实时同步编码保存为MP4文件(视频录制)简介本项目介绍如何在Linux
- 流媒体直播实时视频延迟时间排查和剖析:gop关键帧间隔导致延迟,流媒体和播放器缓存,B帧等导致的延迟
eguid_1
#1.4.3版本)直播延迟视频延迟直播平台播放延迟网络延迟
本章是流媒体直播实时视频延迟时间排查和剖析javaCV系列文章:javacv开发详解之1:调用本机摄像头视频javaCV开发详解之2:推流器实现,推本地摄像头视频到流媒体服务器以及摄像头录制视频功能实现(基于javaCV-FFMPEG、javaCV-openCV)javaCV开发详解之3:收流器实现,录制流媒体服务器的rtsp/rtmp视频文件(基于javaCV-FFMPEG)
- RPA真的是人工智能吗?
微刻时光
RPA加油站rpa人工智能
1.RPA与AI的定义与区别1.1RPA的定义与特点机器人流程自动化(RoboticProcessAutomation,简称RPA)是一种软件技术,它通过模拟人类用户的操作行为来自动执行重复性、基于规则的任务。RPA的核心特点包括:非侵入性:RPA作为外挂工具部署在客户现有系统上,不影响原有IT基础架构。基于规则的操作:RPA流程必须有明确的、可被数字化的触发指令和输入,不允许出现无法提前定义的例
- 信息学奥赛c++语言:求分数序列和
敲代码的八戒
信息学奥赛c++c++算法开发语言数据结构
题目描述有一个分数序列q1/p1,q2/p2,q3/p3,q4/p4,q5/p5,....,其中q(i+1)=qi+pi,p(i+1)=qi,p1=1,q1=2。比如这个序列前6项分别是2/1,3/2,5/3,8/5,13/8,21/13,求这个分数序列的前n项之和。输入输入有一行,包含一个正整数n(n≤30)。输出输出有一行,包含一个浮点数,表示分数序列前n项的和,精确到小数点后4位。样例输入2
- Redis基本命令详解
微刻时光
Redisredis数据库缓存
1.基本命令命令不区分大小写,而key是区分大小写的#select数据库间的切换数据库共计16个127.0.0.1:6379>select1#dbsize返回当前数据库的key的数量127.0.0.1:6379[1]>dbsize#keys*查看数据库所有的key127.0.0.1:6379[1]>keys*#flushdb清除当前数据库127.0.0.1:6379[1]>flushdb#flus
- linux下nginx部署以及配置详解
由数入道
运维服务器
单台配置linux下nginx部署以及配置详解-韦邦杠-博客园(cnblogs.com)多台配置在linux系统下安装两个nginx以及启动、停止、重起-韦邦杠-博客园(cnblogs.com)
- 机器学习与分布式机器学习_经理人的机器学习–您需要知道的
cumian8165
算法神经网络大数据编程语言python
机器学习与分布式机器学习Ifyouaremanagingatechteamasaproductorprojectmanager,hereiswhatyouneedtoknowaboutmachinelearning.如果您要以产品或项目经理的身份管理技术团队,这是您需要了解的有关机器学习的知识。Machinelearninganddeeplearninghavebeenpopularbuzzwor
- 计算机网络(北邮信息工程期末速通)
arbelite
计算机网络
计算机网络计算机网络概述⭐计算机网络的组成和功能计算机网络的组成:从组成看,计算机网络主要由三大部分组成:硬件(hardware),软件(software),协议(protocol)。从工作方式看:可分为边缘部分(edgepart)和核心部分(corepart)。从功能组成来看:计算机网络由通信子网(CommunicationSubnetwork)和资源子网(ResourceSubnetwork)
- 影刀 RPA:企业数字化转型的强大引擎
RPA李老师
rpa
一、影刀RPA是什么影刀RPA是一种基于机器学习和人工智能技术的自动化工具,它在当今数字化时代发挥着重要作用。影刀RPA是一款软件机器人,能模拟人的各种操作,在任何应用程式上进行鼠标点击、键盘输入、读取信息等自动化操作,释放人非主观决策、逻辑性高、规则性强的工作。在了解影刀RPA之前,我们先来认识一下RPA。RPA是RoboticProcessAutomation(机器人流程自动化)的简称,201
- LiteOS 学习第二篇——基本介绍
未知电子
基本概念从系统的角度看,任务是竞争系统资源的最小运行单元。任务可以使用或等待CPU、使用内存空间等系统资源,并独立于其它任务运行。HuaweiLiteOS的任务模块可以给用户提供多个任务,实现了任务之间的切换和通信,帮助用户管理业务程序流程。这样用户可以将更多的精力投入到业务功能的实现中。HuaweiLiteOS是一个支持多任务的操作系统。在HuaweiLiteOS中,一个任务表示一个线程。Hua
- ChatGPT:AI写作中的初级搭档的思考
代码无疆
ChatgptchatgptAI写作人工智能
在当前的AI浪潮中,ChatGPT无疑是一颗璀璨的明星。然而,尽管其能力卓越,但我们也必须正视它的定位——它更像是一个在AI写作领域刚刚踏入职场的“初级搭档”,而非经验丰富的全职员工。ChatGPT的强项在于其强大的通用性和云共享能力,这使得它能够快速响应各种需求。然而,其概率生成和记忆短暂的特点也暴露了它的不足。它缺乏丰富的“面向读者写作”的经验,当我们给予它一个宽泛的指令时,它往往会返回一个相
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- 行业模板|DataEase企业管理大屏模板推荐
FIT2CLOUD飞致云
开源数据可视化DataEase模板市场数据大屏企业管理
DataEase开源BI工具于2022年6月发布模板市场(https://templates.dataease.cn),并于2024年1月新增适用于DataEasev2版本的模板分类。模板市场旨在为DataEase用户提供专业、美观、拿来即用的大屏模板,方便用户根据自身的业务需求和使用场景选择对应的大屏模板,并且在优质模板的基础上轻松制作自己的仪表板及数据大屏。截至2024年12月18日,Data
- 题海拾贝:力扣 138.随机链表的复制
<但凡.
题海拾贝leetcode算法数据结构
Hello大家好!很高兴我们又见面啦!给生活添点passion,开始今天的编程之路!我的博客:val=x;newnode->next=NULL;newnode->random=NULL;returnnewnode;}voidtest(structNode*head){structNode*cur=head;while(cur){structNode*newnode=buynode(cur->val
- 题海拾贝:力扣 225.用队列实现栈
<但凡.
题海拾贝leetcode算法数据结构
Hello大家好!很高兴我们又见面啦!给生活添点passion,开始今天的编程之路!我的博客:phead=ph->ptail=NULL;ph->size=0;}voidQueueDestory(Q*ph){assert(ph);QN*cur=ph->phead;while(cur){QN*next=cur->next;free(cur);cur=next;}//队头队尾置空,否则队头队尾是野指针。
- 2.渲染管线——应用阶段
无敌最俊朗@
渲染管线unity
渲染管线的应用阶段(ApplicationStage)是渲染流程的第一步,负责准备和提交渲染所需的数据。这个阶段由应用程序(如游戏引擎、3D建模软件)控制,开发者在这里定义场景中的物体、材质、灯光、相机等,并将这些数据传递给图形API(如OpenGL、DirectX、Vulkan),以便进入后续的渲染管线。认真讲解:应用阶段的核心任务场景数据的准备:应用程序需要加载3D模型、纹理、材质、灯光等信息
- FFmpeg音视频采集
yerennuo
ffmpegffmpeg音视频
文章目录音视频采集音频采集获取设备信息录制麦克风录制声卡视频采集摄像机画面采集音视频采集DirectShow(简称DShow)是一个Windows平台上的流媒体框架,提供了高质量的多媒体流采集和回放功能,它支持多种多样的媒体文件格式,包括ASF、MPEG、AVI、MP3和WAV文件,同时支持使用WDM驱动或早期的VFW驱动来进行多媒体流的采集。DirectShow大大简化了媒体回放、格式转换和采集
- 【实践】Python实现气象数据分析与可视化
大数据张老师
Python程序设计信息可视化python数据分析可视化
一、项目需求在本节中,我们将明确“气象数据分析与可视化”项目的需求,定义项目的功能和目标,为后续的实现奠定基础。通过本项目,读者将学习如何使用Python的各种数据处理和可视化工具来分析和展示气象数据,从而掌握数据处理与可视化的核心技能。1.项目目标“气象数据分析与可视化”项目的目标是通过对历史气象数据的处理和分析,生成直观的图表和统计结果,帮助用户理解气象趋势并预测未来变化。项目的主要功能如下:
- 基于 Jenkins 的测试报告获取与处理并写入 Jira Wiki 的技术总结
吾爱乐享
wwww.fen
title:基于Jenkins的测试报告获取与处理并写入JiraWiki的技术总结tags:-jenkins-pythoncategories:-jenkins在软件开发的持续集成与持续交付(CI/CD)流程里,及时、准确地获取并分析测试报告对保障软件质量至关重要。本文将详细阐述如何借助Jenkins搭建自动化系统,实现批量触发测试任务、获取测试报告关键信息并写入JiraWiki的全流程自动化,为
- 第 38 章 -GO语言 事件驱动架构
hummhumm
golang架构rubypythonjavajavascript后端
第38章-事件驱动架构1.事件驱动的基本概念事件驱动架构(Event-DrivenArchitecture,EDA)是一种软件架构模式,其中组件或服务之间通过发送和接收事件来通信。事件可以是任何重要的状态变化或用户动作,如点击按钮、数据更新等。这种架构使得系统能够对事件做出快速响应,并且支持松耦合的组件设计。在EDA中,有三个主要角色:事件生产者:产生事件并将其发布到消息队列或事件总线。事件消费者
- 专题三_穷举vs暴搜vs深搜vs回溯vs剪枝_全排列
lisanndesu
算法DFS回溯
dfs解决全排列&子集1.全排列link:46.全排列-力扣(LeetCode)全局变量+回溯codeclassSolution{public:vector>ans;vectorcur;vectorused;vector>permute(vector&nums){//暴力枚举used=vector(nums.size(),false);dfs(nums);returnans;}voiddfs(ve
- Command Center AI
由数入道
应急管理人工智能机器学习智能体
CommandCenterAI是一种先进的智能决策支持系统,专门用于应急指挥和资源调度管理,尤其在高压、复杂的环境中,如自然灾害应对、军事指挥、城市公共安全等领域,帮助决策者做出快速、有效的响应。它集成了大数据处理、实时情报分析、优化调度、决策模拟等功能,为指挥官提供多维度的决策支持。1.CommandCenterAI的核心功能1.1实时数据整合与情报分析CommandCenterAI需要从多个数
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- 用 Docker 搭建 Spark 集群
yeasy
BigdataDockersparkDocker云计算集群分布式计算
简介Spark是Berkeley开发的分布式计算的框架,相对于Hadoop来说,Spark可以缓存中间结果到内存而提高某些需要迭代的计算场景的效率,目前收到广泛关注。熟悉Hadoop的同学也不必担心,Spark很多设计理念和用法都跟Hadoop保持一致和相似,并且在使用上完全兼容HDFS。但是Spark的安装并不容易,依赖包括Java、Scala、HDFS等。通过使用Docker,可以快速的在本地
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- Final2x--开源AI图片放大工具
私人珍藏库
开源
Final2x--开源AI图片放大工具链接:https://pan.xunlei.com/s/VOHSklukQAquUn3GE7eHJXfOA1?pwd=r3r3#
- 小马模拟器-第三方全街机游戏模拟器
私人珍藏库
游戏
链接:https://pan.xunlei.com/s/VOHSiB6st-f3RWlIK01MS2fUA1?pwd=44v7#1.小马模拟器是一款完全免费的游戏模拟器软件,支持街机(FBA,MAME,PGM2),3DS,WII,NGC,DC,SS,DOS,MD,WSC,NDS,JAVA,PCE,FC,SFC,GBA,GBC,PSP,PS,N64等多种游戏机,后续还将不断增加中。软件内集成了ROM
- ProxySQL 读写分离
小左2010925
mysqldatabase负载均衡proxy模式
1.ProxySQL采用不同的端口实现读写分离先说缺点,采用该方案应用程序需要内置读写分离的能力,以便区分读和写。配置ProxySQL监听在两个不同的端口,方法如下:#ProxySQL默认的用于客户端连接的端口是6033ProxyQL-Admin>showvariableslike'mysql-interfaces';+------------------+--------------+|Vari
- 定了!2024下半年软考考试各批次时间已出!
winin2024
经验分享
2024下半年软考机考批次时间安排已在近日公布,2024下半年软考共考3天,除中级系统集成项目管理工程师因报考人数较多采用分批考试外,其它科目均只有一个批次。一、考试时间2024年11月9日-11日。二、考试方式考试采取科目连考、分批次考试的方式,第一个科目节余的时长可为第二个科目使用。高级资格:综合知识和案例分析2个科目连考,作答总时长240分钟,综合知识科目最长作答时长150分钟,最短作答时长
- 【Python设计模式07】工厂方法模式
一碗姜汤
设计模式python设计模式工厂方法模式
工厂方法模式(FactoryMethodPattern)是一种创建型设计模式,它定义了一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使得一个类的实例化延迟到其子类。通过使用工厂方法模式,可以将对象的创建过程与使用过程分离,从而提高代码的灵活性和可扩展性。工厂方法模式的结构工厂方法模式主要包括以下几个角色:抽象产品(Product):定义产品的接口。具体产品(ConcreteProduc
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不