管道可以看作受驱动器 pipeDrv 管理的虚拟 I/O 设备,使用基本的 I/O 系统接口可以读、写和操作管道,这些函数包括 read write open close ioctl select 等。与 pipe 密切相关的其它 API 还有:
1 pipeDrv( ) :初始化 pipeDrv ,函数原型:
STATUS pipeDrv (void);
2 pipeDevCreate( ) :创建 pipe ,函数原型:
STATUS pipeDevCreate
    (
    char * name,              /* 创建的 pipe */
    int    nMessages,         /* pipe 中的最大消息数 */
    int    nBytes             /* 每个消息的大小 */
    );
3 pipeDevDelete :删除 pipe ,函数原型:
STATUS pipeDevDelete
    (
    char * name,              /* 要删除的 pipe */
    BOOL   force              /* 如果为真,则强制删除 pipe */
    );
下面我们看看 pipe 使用的 demo
3 :管道
/* includes */
#include "vxWorks.h"
#include "taskLib.h"
#include "stdio.h"
#include "ioLib.h"
#include "pipeDrv.h"
 
/*globals */
typedef struct
{
  VOIDFUNCPTR routine;   /* 函数指针 */
  int arg;
} MSG_REQUEST; /* message structure */
 
#define TASK_PRI          254             /* tServers task's priority */
#define TASK_STACK_SIZE  5000      /* tServer task's stack size */
#define PIPE_NAME       "/pipe/server"  /* name of the pipe device */
#define NUM_MSGS  10     /* max number of messages in the pipe */
 
LOCAL int pipeFd; /* File descriptor for the pipe device */
LOCAL void pipeServer(); /* server task */
 
/* serverStart :初始化 pipeServer 任务以执行管道中夹带的函数 */
STATUS serverStart()
{
  if (pipeDevCreate(PIPE_NAME, NUM_MSGS, sizeof(MSG_REQUEST)) == ERROR)
  {
    perror("Error in creating pipe"); /* print error if pipe is already
     * created, but do not return */
  }
 
  /* Open the pipe */
  if ((pipeFd = open(PIPE_NAME, UPDATE, 0)) == ERROR)
  {
    perror("Error in opening pipe device");
    return (ERROR);
  }
 
  /* Spawn the server task */
  if (taskSpawn("tServer", TASK_PRI, 0, TASK_STACK_SIZE, (FUNCPTR)pipeServer, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0) == ERROR)
  {
    perror("Error in spawning tServer task");
    close(pipeFd);
    return (ERROR);
  }
 
  return (OK);
}
 
/* serverSend :发送管道消息,将函数指针作为消息的一部分 */
STATUS serverSend(VOIDFUNCPTR routine, /* name of the routine to execute */ int arg /* argument of the routine */
)
{
  MSG_REQUEST msgRequest;
  int status;
 
  /* Initialize the message structure */
  msgRequest.routine = routine;
  msgRequest.arg = arg;
 
  /* Send the message and return the results */
  status = write(pipeFd, (char*) &msgRequest, sizeof(MSG_REQUEST));
 
  return ((status == sizeof(MSG_REQUEST)) ? OK : ERROR);
}
 
/* pipeServer :读取管道消息并执行管道消息中夹带的函数 */
LOCAL void pipeServer()
{
  MSG_REQUEST msgRequest;
 
  while (read(pipeFd, (char*) &msgRequest, sizeof(MSG_REQUEST)) > 0)
    (*msgRequest.routine)(msgRequest.arg);
}
   上述程序中, pipeServer 执行于非常低的优先级 (254 ) ,当我们在 shell 中输入“ serverSend(VOIDFUNCPTR routine, int arg) 时, pipeServer 将读到管道中的消息,并执行“ *routine (arg) ”。
       为对此进行验证,我们在程序中再添加一个函数:
void PRINT(int arg)
{
       printf("%d",arg);
}
当我们在 tShell 中输入“ serverSend(PRINT,2); ”,在 VxSim 中将输出 2

9.套接字

不论网络中的节点使用什么操作系统,套接字的通信都是完全对等的。套接字有两种:
1 )流套接字( SOCK_STREAM ,采用 TCP 协议):流套接字提供了双向的、有序的、无重复并且无记录边界的数据流服务;
2 )数据报套接字( SOCK_DGRAM ,采用 UDP 协议):数据报套接字也支持双向数据传输,但并不保证是可靠、有序和无重复的。
另外还有一种 RAW 套接字,但不常见。
VxWorks 中与 Socket 相关的函数有:
1 socket() :创建套接字    ,原型为:
int socket
    (
    int domain,    /* address family (for example, AF_INET) */
    int type,      /* SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW */
    int protocol   /* socket protocol (usually 0) */
    );
2 bind() :给套接字绑定名称 ,原型为:
STATUS bind
    (
    int               s,      /* socket descriptor */
    struct sockaddr * name,   /* name to be bound */
    int            namelen /* length of name */
    );
3 listen() :服务端监听 TCP 连接请求,原型为:
STATUS listen
    (
    int s,                    /* socket descriptor */
    int backlog               /* number of connections to queue */
    );
4 accept() :服务端接受 TCP 连接请求,原型为:
int accept
    (
    int            s,      /* socket descriptor */
    struct sockaddr * addr,   /* peer address */
    int *           addrlen /* peer address length */
    );
5 connect() :客户端请求连接套接字,原型为:
STATUS connect
    (
    int               s,      /* socket descriptor */
    struct sockaddr * name,   /* addr of socket to connect */
    int            namelen /* length of name, in bytes */
    );
6 shutdown() :关闭套接字间连接,原型为:
STATUS shutdown
    (
    int s,                /* socket to shut down */
    int how              /* 0:receives disallowed;1:sends disallowed;
2:sends and receives disallowed */
    );
7 sendto() send() sendmsg() :发送数据
int sendto
    (
    int               s,      /* socket to send data to */
    caddr_t           buf,    /* pointer to data buffer */
    int               bufLen, /* length of buffer */
    int               flags,  /* flags to underlying protocols */
    struct sockaddr * to,     /* recipient's address */
    int               tolen   /* length of to sockaddr */
    );
 
int send
    (
    int          s,           /* socket to send to */
    const char * buf,         /* pointer to buffer to transmit */
    int          bufLen,      /* length of buffer */
    int          flags        /* flags to underlying protocols */
    );
 
int sendmsg
    (
    int             sd,       /* socket to send to */
    struct msghdr * mp,       /* scatter-gather message header */
    int             flags     /* flags to underlying protocols */
    );
8 recvfrom () recv () recvmsg () :接收数据
int recvfrom
    (
    int               s,       /* socket to receive from */
    char *            buf,     /* pointer to data buffer */
    int               bufLen,  /* length of buffer */
    int               flags,   /* flags to underlying protocols */
    struct sockaddr * from,    /* where to copy sender's addr */
    int *             pFromLen /* value/result length of from */
    );
 
int recv
    (
    int    s,                 /* socket to receive data from */
    char * buf,               /* buffer to write data to */
    int    bufLen,            /* length of buffer */
    int    flags              /* flags to underlying protocols */
    );
 
int recvmsg
    (
    int             sd,       /* socket to receive from */
    struct msghdr * mp,       /* scatter-gather message header */
    int             flags     /* flags to underlying protocols */
    );
限于篇幅的关系,我们在此不在列举 socket 通信的例子。但在最后一次连载的综合实例中,将包括完整的 socket 通信过程源代码。

10.信号与异常处理

信号是 VxWorks 中用于异常处理的方式,信号的驱动和执行机制有点类似于硬件中断(可以认为是一种软件上的通告,即 software notification)。信号的生存期为从“产生”到“传递”,一个“产生”而未“传递”的信号处于 pending 状态。信号适宜进行异常处理,任务间的通信不要使用信号。
下面是从 Embry-Riddle Real-Time Laboratory 试验课程中获得的一个 signal 的例子:
4 :信号与异常处理
/* includes */
#include "vxWorks.h"
#include "sigLib.h"
#include "taskLib.h"
#include "stdio.h"
 
/* function prototypes */
void catchSIGINT(int);
void sigCatcher(void);
 
/* globals */
#define NO_OPTIONS 0
#define ITER1 100
#define LONG_TIME 1000000
#define HIGHPRIORITY 100
#define LOWPRIORITY 101
int ownId;
 
void sigGenerator(void) /* task to generate the SIGINT signal */
{
  int i, j, taskId;
  STATUS taskAlive;
 
  if ((taskId = taskSpawn("signal", 100, 0x100, 20000, (FUNCPTR)sigCatcher, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0)) == ERROR)
    printf("taskSpawn sigCatcher failed\n");
 
  ownId = taskIdSelf(); /* get sigGenerator's task id */
 
  taskDelay(30); /* allow time to get sigCatcher to run */
 
  for (i = 0; i < ITER1; i++)
  {
    if ((taskAlive = taskIdVerify(taskId)) == OK)
    {
      printf("+++++++++++++++++++++++++++++++SIGINT sinal generated\n");
      kill(taskId, SIGINT); /* generate signal */
      /* lower sigGenerator priority to allow sigCatcher to run */
      taskPrioritySet(ownId, LOWPRIORITY);
    }
    else
     /* sigCatcher is dead */
      break;
  }
  printf("\n***************sigGenerator Exited***************\n");
}
 
void sigCatcher(void) /* task to handle the SIGINT signal */
{
  struct sigaction newAction;
  int i, j;
 
  newAction.sa_handler = catchSIGINT; /* set the new handler */
  sigemptyset(&newAction.sa_mask); /* no other signals blocked */
  newAction.sa_flags = NO_OPTIONS; /* no special options */
 
  if (sigaction(SIGINT, &newAction, NULL) ==  - 1)
    printf("Could not install signal handler\n");
 
  for (i = 0; i < ITER1; i++)
  {
    for (j = 0; j < LONG_TIME; j++)
      ;
    printf(" Normal processing in sigCatcher\n");
  }
 
  printf("\n+++++++++++++++sigCatcher Exited+++++++++++++++\n");
}
 
void catchSIGINT(int signal) /* signal handler code */
{
  printf("-------------------------------SIGINT signal caught\n");
  /* increase sigGenerator priority to allow sigGenerator to run */
  taskPrioritySet(ownId, HIGHPRIORITY);
}
分析以上程序, kill() 函数产生信号,其原型为:
int kill
    (
    int tid,                  /* task to send signal to */
    int signo                 /* signal to send to task */
    );
sigaction() 函数将信号与信号处理函数进行绑定,一个信号处理函数类似于程序中的 catchSIGINT 函数,一般结构为:
void sigHandlerFunction(int signalNumber)
{
... /* signal handler code */
}
sigaction() 函数的原型为:
int sigaction
    (
    int               signo, /* signal of handler of interest */
    const struct sigaction * pAct,  /* location of new handler */
    struct sigaction *   pOact  /* location to store old handler */
    );
 signo 为信号序号,而输入参数 pAct 中存放的是信号处理函数的信息, pOact 是一个输出参数,可以获得老的信号处理函数信息。
运行上述程序,输出结果为:
Normal processing in sigCatcher 
     // 大量的 Normal processing in sigCatcher
Normal processing in sigCatcher 
+++++++++++++++sigCatcher Exited+++++++++++++++
我们将从下一次连载――《 VxWorks 中断处理》中发现中断与信号的相似性。