Bulletproofs 代码解析

1. 引言

Benedikt B¨unz、 Jonathan Bootle和 Dan Boneh等人2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》,相应的代码实现库有:

  • https://github.com/dalek-cryptography/bulletproofs
  • https://github.com/adjoint-io/bulletproofs
  • https://github.com/lovesh/bulletproofs-r1cs-gadgets (基于 https://github.com/dalek-cryptography/bulletproofs ,将待证明statement转换为R1CS arithmetic circuit进行证明,包含的例子有:证明某值在特定范围;证明某值为非附属;证明某值不等于特定值;membership或non-membership证明等等。)
  • https://github.com/KZen-networks/bulletproofs
  • https://github.com/akosba/jsnark

https://github.com/akosba/jsnark 中提供了一个通用工具,用于构建Bulletproofs for any NP language,该工具可读取Pinocchio格式的arithmetic circuit,同时包含了将C语言编译为circuit fomat 的编译器。

本博文主要针对https://github.com/dalek-cryptography/bulletproofs 代码实现进行解析。

https://github.com/dalek-cryptography/bulletproofs 为当前速度最快的Bulletproofs算法实现,其使用https://github.com/dalek-cryptography/curve25519-dalek 中对 curve25519曲线 封装的 ristretto255 group ,当采用 AVX2 backend来进行并行计算时,对于64-bit的rangproofs,其速度要比 libsecp256k1实现的Bulletproofs 快将近2倍。
https://github.com/dalek-cryptography/bulletproofs/blob/main/Cargo.toml 中配置可知,https://github.com/dalek-cryptography/bulletproofs 默认启动了avx2_backend并行计算.

[features]
default = ["std", "avx2_backend"]
avx2_backend = ["curve25519-dalek/avx2_backend"]
# yoloproofs = []
std = ["rand", "rand/std", "thiserror"]

为实现non-interactive zero-knowledge proof,其中的 Fiat-Shamir transform 采用的是 Merlin框架(https://github.com/dalek-cryptography/merlin)。

2. Inner product proof 代码实现 ipp

Bulletproofs 代码解析_第1张图片
Bulletproofs 代码解析_第2张图片
主要见https://github.com/dalek-cryptography/bulletproofs/blob/main/src/inner_product_proof.rs 中代码:

fn test_helper_create(n: usize) { //其中n为vector size
        let mut rng = rand::thread_rng();

        use crate::generators::BulletproofGens;
        let bp_gens = BulletproofGens::new(n, 1);
        let G: Vec = bp_gens.share(0).G(n).cloned().collect();
        let H: Vec = bp_gens.share(0).H(n).cloned().collect();

        // Q would be determined upstream in the protocol, so we pick a random one.
        let Q = RistrettoPoint::hash_from_bytes::(b"test point");

        // a and b are the vectors for which we want to prove c = 
        let a: Vec<_> = (0..n).map(|_| Scalar::random(&mut rng)).collect();
        let b: Vec<_> = (0..n).map(|_| Scalar::random(&mut rng)).collect();
        let c = inner_product(&a, &b);

        let G_factors: Vec = iter::repeat(Scalar::one()).take(n).collect();

        // y_inv is (the inverse of) a random challenge
        let y_inv = Scalar::random(&mut rng);
        let H_factors: Vec = util::exp_iter(y_inv).take(n).collect();

        // P would be determined upstream, but we need a correct P to check the proof.
        //
        // To generate P =  +  +  Q, compute
        //             P =  +  +  Q,
        // where b' = b \circ y^(-n)
        let b_prime = b.iter().zip(util::exp_iter(y_inv)).map(|(bi, yi)| bi * yi);
        // a.iter() has Item=&Scalar, need Item=Scalar to chain with b_prime
        let a_prime = a.iter().cloned();

        let P = RistrettoPoint::vartime_multiscalar_mul(
            a_prime.chain(b_prime).chain(iter::once(c)),
            G.iter().chain(H.iter()).chain(iter::once(&Q)),
        );

        let mut verifier = Transcript::new(b"innerproducttest");
        let proof = InnerProductProof::create(
            &mut verifier,
            &Q,
            &G_factors,
            &H_factors,
            G.clone(),
            H.clone(),
            a.clone(),
            b.clone(),
        );

        let mut verifier = Transcript::new(b"innerproducttest");
        assert!(proof
            .verify(
                n,
                &mut verifier,
                iter::repeat(Scalar::one()).take(n),
                util::exp_iter(y_inv).take(n),
                &P,
                &Q,
                &G,
                &H
            )
            .is_ok());

        let proof = InnerProductProof::from_bytes(proof.to_bytes().as_slice()).unwrap();
        let mut verifier = Transcript::new(b"innerproducttest");
        assert!(proof
            .verify(
                n,
                &mut verifier,
                iter::repeat(Scalar::one()).take(n),
                util::exp_iter(y_inv).take(n),
                &P,
                &Q,
                &G,
                &H
            )
            .is_ok());
    }

3. range proof (aggregated)

Bulletproofs 代码解析_第3张图片
Bulletproofs 代码解析_第4张图片
Bulletproofs 代码解析_第5张图片
Bulletproofs 代码解析_第6张图片
Bulletproofs 代码解析_第7张图片
Bulletproofs 代码解析_第8张图片

代码实现主要见https://github.com/dalek-cryptography/bulletproofs/blob/main/src/range_proof/mod.rs

// m为value数量,n为范围的bitsize
/// Given a bitsize `n`, test the following:
    ///
    /// 1. Generate `m` random values and create a proof they are all in range;
    /// 2. Serialize to wire format;
    /// 3. Deserialize from wire format;
    /// 4. Verify the proof.
    fn singleparty_create_and_verify_helper(n: usize, m: usize) {
        // Split the test into two scopes, so that it's explicit what
        // data is shared between the prover and the verifier.

        // Use bincode for serialization
        //use bincode; // already present in lib.rs

        // Both prover and verifier have access to the generators and the proof
        let max_bitsize = 64;
        let max_parties = 8;
        let pc_gens = PedersenGens::default();
        let bp_gens = BulletproofGens::new(max_bitsize, max_parties);

        // Prover's scope
        let (proof_bytes, value_commitments) = {
            use self::rand::Rng;
            let mut rng = rand::thread_rng();

            // 0. Create witness data
            let (min, max) = (0u64, ((1u128 << n) - 1) as u64);
            let values: Vec = (0..m).map(|_| rng.gen_range(min, max)).collect();
            let blindings: Vec = (0..m).map(|_| Scalar::random(&mut rng)).collect();

            // 1. Create the proof
            let mut transcript = Transcript::new(b"AggregatedRangeProofTest");
            let (proof, value_commitments) = RangeProof::prove_multiple(
                &bp_gens,
                &pc_gens,
                &mut transcript,
                &values,
                &blindings,
                n,
            )
            .unwrap();

            // 2. Return serialized proof and value commitments
            (bincode::serialize(&proof).unwrap(), value_commitments)
        };

        // Verifier's scope
        {
            // 3. Deserialize
            let proof: RangeProof = bincode::deserialize(&proof_bytes).unwrap();

            // 4. Verify with the same customization label as above
            let mut transcript = Transcript::new(b"AggregatedRangeProofTest");

            assert!(proof
                .verify_multiple(&bp_gens, &pc_gens, &mut transcript, &value_commitments, n)
                .is_ok());
        }
    }

4. Bulletproofs MPC协议

代码实现主要见https://github.com/dalek-cryptography/bulletproofs/blob/main/src/range_proof/mod.rs

 #[test]
    fn detect_dishonest_party_during_aggregation() {
        use self::dealer::*;
        use self::party::*;

        use crate::errors::MPCError;

        // Simulate four parties, two of which will be dishonest and use a 64-bit value.
        let m = 4;
        let n = 32;

        let pc_gens = PedersenGens::default();
        let bp_gens = BulletproofGens::new(n, m);

        use self::rand::Rng;
        let mut rng = rand::thread_rng();
        let mut transcript = Transcript::new(b"AggregatedRangeProofTest");

        // Parties 0, 2 are honest and use a 32-bit value
        let v0 = rng.gen::() as u64;
        let v0_blinding = Scalar::random(&mut rng);
        let party0 = Party::new(&bp_gens, &pc_gens, v0, v0_blinding, n).unwrap();

        let v2 = rng.gen::() as u64;
        let v2_blinding = Scalar::random(&mut rng);
        let party2 = Party::new(&bp_gens, &pc_gens, v2, v2_blinding, n).unwrap();

        // Parties 1, 3 are dishonest and use a 64-bit value
        let v1 = rng.gen::();
        let v1_blinding = Scalar::random(&mut rng);
        let party1 = Party::new(&bp_gens, &pc_gens, v1, v1_blinding, n).unwrap();

        let v3 = rng.gen::();
        let v3_blinding = Scalar::random(&mut rng);
        let party3 = Party::new(&bp_gens, &pc_gens, v3, v3_blinding, n).unwrap();

        let dealer = Dealer::new(&bp_gens, &pc_gens, &mut transcript, n, m).unwrap();

        let (party0, bit_com0) = party0.assign_position(0).unwrap();
        let (party1, bit_com1) = party1.assign_position(1).unwrap();
        let (party2, bit_com2) = party2.assign_position(2).unwrap();
        let (party3, bit_com3) = party3.assign_position(3).unwrap();

        let (dealer, bit_challenge) = dealer
            .receive_bit_commitments(vec![bit_com0, bit_com1, bit_com2, bit_com3])
            .unwrap();

        let (party0, poly_com0) = party0.apply_challenge(&bit_challenge);
        let (party1, poly_com1) = party1.apply_challenge(&bit_challenge);
        let (party2, poly_com2) = party2.apply_challenge(&bit_challenge);
        let (party3, poly_com3) = party3.apply_challenge(&bit_challenge);

        let (dealer, poly_challenge) = dealer
            .receive_poly_commitments(vec![poly_com0, poly_com1, poly_com2, poly_com3])
            .unwrap();

        let share0 = party0.apply_challenge(&poly_challenge).unwrap();
        let share1 = party1.apply_challenge(&poly_challenge).unwrap();
        let share2 = party2.apply_challenge(&poly_challenge).unwrap();
        let share3 = party3.apply_challenge(&poly_challenge).unwrap();

        match dealer.receive_shares(&[share0, share1, share2, share3]) {
            Err(MPCError::MalformedProofShares { bad_shares }) => {
                assert_eq!(bad_shares, vec![1, 3]);
            }
            Err(_) => {
                panic!("Got wrong error type from malformed shares");
            }
            Ok(_) => {
                panic!("The proof was malformed, but it was not detected");
            }
        }
    }

    #[test]
    fn detect_dishonest_dealer_during_aggregation() {
        use self::dealer::*;
        use self::party::*;
        use crate::errors::MPCError;

        // Simulate one party
        let m = 1;
        let n = 32;

        let pc_gens = PedersenGens::default();
        let bp_gens = BulletproofGens::new(n, m);

        use self::rand::Rng;
        let mut rng = rand::thread_rng();
        let mut transcript = Transcript::new(b"AggregatedRangeProofTest");

        let v0 = rng.gen::() as u64;
        let v0_blinding = Scalar::random(&mut rng);
        let party0 = Party::new(&bp_gens, &pc_gens, v0, v0_blinding, n).unwrap();

        let dealer = Dealer::new(&bp_gens, &pc_gens, &mut transcript, n, m).unwrap();

        // Now do the protocol flow as normal....

        let (party0, bit_com0) = party0.assign_position(0).unwrap();

        let (dealer, bit_challenge) = dealer.receive_bit_commitments(vec![bit_com0]).unwrap();

        let (party0, poly_com0) = party0.apply_challenge(&bit_challenge);

        let (_dealer, mut poly_challenge) =
            dealer.receive_poly_commitments(vec![poly_com0]).unwrap();

        // But now simulate a malicious dealer choosing x = 0
        poly_challenge.x = Scalar::zero();

        let maybe_share0 = party0.apply_challenge(&poly_challenge);

        assert!(maybe_share0.unwrap_err() == MPCError::MaliciousDealer);
    }

5. Bulletproofs R1CS——用于Verifiable shuffle证明

如需运行,注意切换develop 分支,同时cargo test --feature "yoloproofs"

其中的permutation为未知不公开的Verifiable shuffle证明。
主要思路为:
若committed x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn为committed y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn的某中permutation,则对于任意的challenge z z z,应有:
∏ i = 1 n ( x i − z ) = ∏ i = 1 n ( y i − z ) \prod_{i=1}^{n}(x_i-z)=\prod_{i=1}^{n}(y_i-z) i=1n(xiz)=i=1n(yiz) 恒成立。

具体的代码实现见:https://github.com/dalek-cryptography/bulletproofs/blob/main/tests/r1cs.rs

fn kshuffle_helper(k: usize) { // k为vector size
    use rand::Rng;

    // Common code
    let pc_gens = PedersenGens::default();
    let bp_gens = BulletproofGens::new((2 * k).next_power_of_two(), 1);

    let (proof, input_commitments, output_commitments) = {
        // Randomly generate inputs and outputs to kshuffle
        let mut rng = rand::thread_rng();
        let (min, max) = (0u64, std::u64::MAX);
        let input: Vec = (0..k)
            .map(|_| Scalar::from(rng.gen_range(min, max)))
            .collect();
        let mut output = input.clone();
        output.shuffle(&mut rand::thread_rng());

        let mut prover_transcript = Transcript::new(b"ShuffleProofTest");
        ShuffleProof::prove(&pc_gens, &bp_gens, &mut prover_transcript, &input, &output).unwrap()
    };

    {
        let mut verifier_transcript = Transcript::new(b"ShuffleProofTest");
        assert!(proof
            .verify(
                &pc_gens,
                &bp_gens,
                &mut verifier_transcript,
                &input_commitments,
                &output_commitments
            )
            .is_ok());
    }
}

参考资料

[1] 博客 Bulletproof现有代码实现说明
[2] 博客 bulletproofs for r1cs
[3] 博客 ristretto255对外API抽象及基于Curve25519的ristretto255层实现
[4] 博客 ristretto对cofactor>1的椭圆曲线(如Curve25519等)的兼容(含Curve25519 cofactor的sage验证)
[5] 博客 Zero knowledge proofs using Bulletproofs
[6] 博客 curve25519-dalek并行运算性能
[7] 博客 Accelerating Edwards Curve Arithmetic with Parallel Formulas
[8] 博客 Merlin——零知识证明(1)理论篇

你可能感兴趣的:(零知识证明)