http://www.cnblogs.com/Anker/archive/2013/08/14/3258674.html
IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程。IO多路复用适用如下场合:
(1)当客户处理多个描述字时(一般是交互式输入和网络套接口),必须使用I/O复用。
(2)当一个客户同时处理多个套接口时,而这种情况是可能的,但很少出现。
(3)如果一个TCP服务器既要处理监听套接口,又要处理已连接套接口,一般也要用到I/O复用。
(4)如果一个服务器即要处理TCP,又要处理UDP,一般要使用I/O复用。
(5)如果一个服务器要处理多个服务或多个协议,一般要使用I/O复用。
与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。
该函数准许进程指示内核等待多个事件中的任何一个发送,并只在有一个或多个事件发生或经历一段指定的时间后才唤醒。函数原型如下:
#include
#include
int select(int maxfdp1,fd_set *readset,fd_set *writeset,fd_set *exceptset,
const struct timeval *timeout) //返回值:就绪描述符的数目,超时返回0,出错返回-1
函数参数介绍如下:
(1)第一个参数maxfdp1指定待测试的描述字个数,它的值是待测试的最大描述字加1(因此把该参数命名为maxfdp1),描述字0、1、2…maxfdp1-1均将被测试。
因为文件描述符是从0开始的。
(2)中间的三个参数readset、writeset和exceptset指定我们要让内核测试读、写和异常条件的描述字。如果对某一个的条件不感兴趣,就可以把它设为空指针。struct fd_set可以理解为一个集合,这个集合中存放的是文件描述符,可通过以下四个宏进行设置:
void FD_ZERO(fd_set *fdset); //清空集合
void FD_SET(int fd, fd_set *fdset); //将一个给定的文件描述符加入集合之中
void FD_CLR(int fd, fd_set *fdset); //将一个给定的文件描述符从集合中删除
int FD_ISSET(int fd, fd_set *fdset); // 检查集合中指定的文件描述符是否可以读写
(3)timeout告知内核等待所指定描述字中的任何一个就绪可花多少时间。其timeval结构用于指定这段时间的秒数和微秒数。
struct timeval{
long tv_sec; //seconds
long tv_usec; //microseconds
};
这个参数有三种可能:
(1)永远等待下去:仅在有一个描述字准备好I/O时才返回。为此,把该参数设置为空指针NULL。
(2)等待一段固定时间:在有一个描述字准备好I/O时返回,但是不超过由该参数所指向的timeval结构中指定的秒数和微秒数。
(3)根本不等待:检查描述字后立即返回,这称为轮询。为此,该参数必须指向一个timeval结构,而且其中的定时器值必须为0。
写一个TCP回射程序,程序的功能是:客户端向服务器发送信息,服务器接收并原样发送给客户端,客户端显示出接收到的信息。
服务端程序如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define IPADDR "127.0.0.1"
#define PORT 8787
#define MAXLINE 1024
#define LISTENQ 5
#define SIZE 10
typedef struct server_context_st
{
int cli_cnt; /*客户端个数*/
int clifds[SIZE]; /*客户端的个数*/
fd_set allfds; /*句柄集合*/
int maxfd; /*句柄最大值*/
} server_context_st;
static server_context_st *s_srv_ctx = NULL;
/*===========================================================================
* ==========================================================================*/
static int create_server_proc(const char* ip,int port)
{
int fd;
struct sockaddr_in servaddr;
fd = socket(AF_INET, SOCK_STREAM,0);
if (fd == -1) {
fprintf(stderr, "create socket fail,erron:%d,reason:%s\n",
errno, strerror(errno));
return -1;
}
/*一个端口释放后会等待两分钟之后才能再被使用,SO_REUSEADDR是让端口释放后立即就可以被再次使用。*/
int reuse = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse)) == -1) {
return -1;
}
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET,ip,&servaddr.sin_addr);
servaddr.sin_port = htons(port);
if (bind(fd,(struct sockaddr*)&servaddr,sizeof(servaddr)) == -1) {
perror("bind error: ");
return -1;
}
listen(fd,LISTENQ);
return fd;
}
static int accept_client_proc(int srvfd)
{
struct sockaddr_in cliaddr;
socklen_t cliaddrlen;
cliaddrlen = sizeof(cliaddr);
int clifd = -1;
printf("accpet clint proc is called.\n");
ACCEPT:
clifd = accept(srvfd,(struct sockaddr*)&cliaddr,&cliaddrlen);
if (clifd == -1) {
if (errno == EINTR) {
goto ACCEPT;
} else {
fprintf(stderr, "accept fail,error:%s\n", strerror(errno));
return -1;
}
}
fprintf(stdout, "accept a new client: %s:%d\n",
inet_ntoa(cliaddr.sin_addr),cliaddr.sin_port);
//将新的连接描述符添加到数组中
int i = 0;
for (i = 0; i < SIZE; i++) {
if (s_srv_ctx->clifds[i] < 0) {
s_srv_ctx->clifds[i] = clifd;
s_srv_ctx->cli_cnt++;
break;
}
}
if (i == SIZE) {
fprintf(stderr,"too many clients.\n");
return -1;
}
}
static int handle_client_msg(int fd, char *buf)
{
assert(buf);
printf("recv buf is :%s\n", buf);
write(fd, buf, strlen(buf) +1);
return 0;
}
static void recv_client_msg(fd_set *readfds)
{
int i = 0, n = 0;
int clifd;
char buf[MAXLINE] = {0};
for (i = 0;i <= s_srv_ctx->cli_cnt;i++) {
clifd = s_srv_ctx->clifds[i];
if (clifd < 0) {
continue;
}
/*判断客户端套接字是否有数据*/
if (FD_ISSET(clifd, readfds)) {
//接收客户端发送的信息
n = read(clifd, buf, MAXLINE);
if (n <= 0) {
/*n==0表示读取完成,客户都关闭套接字*/
FD_CLR(clifd, &s_srv_ctx->allfds);
close(clifd);
s_srv_ctx->clifds[i] = -1;
continue;
}
handle_client_msg(clifd, buf);
}
}
}
static void handle_client_proc(int srvfd)
{
int clifd = -1;
int retval = 0;
fd_set *readfds = &s_srv_ctx->allfds;
struct timeval tv;
int i = 0;
while (1) {
/*每次调用select前都要重新设置文件描述符和时间,因为事件发生后,文件描述符和时间都被内核修改啦*/
FD_ZERO(readfds);
/*添加监听套接字*/
FD_SET(srvfd, readfds);
s_srv_ctx->maxfd = srvfd;
tv.tv_sec = 30;
tv.tv_usec = 0;
/*添加客户端套接字*/
for (i = 0; i < s_srv_ctx->cli_cnt; i++) {
clifd = s_srv_ctx->clifds[i];
/*去除无效的客户端句柄*/
if (clifd != -1) {
FD_SET(clifd, readfds);
}
s_srv_ctx->maxfd = (clifd > s_srv_ctx->maxfd ? clifd : s_srv_ctx->maxfd);
}
/*开始轮询接收处理服务端和客户端套接字*/
retval = select(s_srv_ctx->maxfd + 1, readfds, NULL, NULL, &tv);
if (retval == -1) {
fprintf(stderr, "select error:%s.\n", strerror(errno));
return;
}
if (retval == 0) {
fprintf(stdout, "select is timeout.\n");
continue;
}
if (FD_ISSET(srvfd, readfds)) {
/*监听客户端请求*/
accept_client_proc(srvfd);
} else {
/*接受处理客户端消息*/
recv_client_msg(readfds);
}
}
}
static void server_uninit()
{
if (s_srv_ctx) {
free(s_srv_ctx);
s_srv_ctx = NULL;
}
}
static int server_init()
{
s_srv_ctx = (server_context_st *)malloc(sizeof(server_context_st));
if (s_srv_ctx == NULL) {
return -1;
}
memset(s_srv_ctx, 0, sizeof(server_context_st));
int i = 0;
for (;i < SIZE; i++) {
s_srv_ctx->clifds[i] = -1;
}
return 0;
}
int main(int argc,char *argv[])
{
int srvfd;
/*初始化服务端context*/
if (server_init() < 0) {
return -1;
}
/*创建服务,开始监听客户端请求*/
srvfd = create_server_proc(IPADDR, PORT);
if (srvfd < 0) {
fprintf(stderr, "socket create or bind fail.\n");
goto err;
}
/*开始接收并处理客户端请求*/
handle_client_proc(srvfd);
server_uninit();
return 0;
err:
server_uninit();
return -1;
}
客户端程序
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAXLINE 1024
#define IPADDRESS "127.0.0.1"
#define SERV_PORT 8787
#define max(a,b) (a > b) ? a : b
static void handle_recv_msg(int sockfd, char *buf)
{
printf("client recv msg is:%s\n", buf);
sleep(5);
write(sockfd, buf, strlen(buf) +1);
}
static void handle_connection(int sockfd)
{
char sendline[MAXLINE],recvline[MAXLINE];
int maxfdp,stdineof;
fd_set readfds;
int n;
struct timeval tv;
int retval = 0;
while (1) {
FD_ZERO(&readfds);
FD_SET(sockfd,&readfds);
maxfdp = sockfd;
tv.tv_sec = 5;
tv.tv_usec = 0;
retval = select(maxfdp+1,&readfds,NULL,NULL,&tv);
if (retval == -1) {
return ;
}
if (retval == 0) {
printf("client timeout.\n");
continue;
}
if (FD_ISSET(sockfd, &readfds)) {
n = read(sockfd,recvline,MAXLINE);
if (n <= 0) {
fprintf(stderr,"client: server is closed.\n");
close(sockfd);
FD_CLR(sockfd,&readfds);
return;
}
handle_recv_msg(sockfd, recvline);
}
}
}
int main(int argc,char *argv[])
{
int sockfd;
struct sockaddr_in servaddr;
sockfd = socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERV_PORT);
inet_pton(AF_INET,IPADDRESS,&servaddr.sin_addr);
int retval = 0;
retval = connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
if (retval < 0) {
fprintf(stderr, "connect fail,error:%s\n", strerror(errno));
return -1;
}
printf("client send to server .\n");
write(sockfd, "hello server", 32);
handle_connection(sockfd);
return 0;
}
http://blog.csdn.net/qq546770908/article/details/53082870
poll提供的功能与select类似,不过在处理流设备时,它能够提供额外的信息。
poll的机制与select类似,与select在本质上没有多大差别,管理多个描述符也是进行轮询,根据描述符的状态进行处理,但是poll没有最大文件描述符数量的限制。poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。
#include
int poll(struct pollfd fd[], nfds_t nfds, int timeout);
参数: 1)第一个参数:一个结构数组,struct pollfd结构如下:
struct pollfd{
int fd; //文件描述符
short events; //请求的事件,等待的事件
short revents; //返回的事件,实际上发生的事件
};
events和revents是通过对代表各种事件的标志进行逻辑或运算构建而成的。events包括要监视的事件,poll用已经发生的事件填充revents。poll函数通过在revents中设置标志肌肤POLLHUP、POLLERR和POLLNVAL来反映相关条件的存在。不需要在events中对于这些标志符相关的比特位进行设置。如果fd小于0, 则events字段被忽略,而revents被置为0.标准中没有说明如何处理文件结束。文件结束可以通过revents的标识符POLLHUN或返回0字节的常规读操作来传达。即使POLLIN或POLLRDNORM指出还有数据要读,POLLHUP也可能会被设置。因此,应该在错误检验之前处理正常的读操作。
每一个pollfd结构体指定了一个被监视的文件描述符,可以传递多个结构体,指示poll()监视多个文件描述符。每个结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域。revents域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域。events域中请求的任何事件都可能在revents域中返回。合法的事件如下:
常量 | 说明 |
---|---|
POLLIN | 普通或优先级带数据可读,有数据可读 |
POLLRDNORM | 普通数据可读,有普通数据可读 |
POLLRDBAND | 优先级带数据可读,有优先数据可读 |
POLLPRI | 高优先级数据可读, 有紧迫数据可读 |
POLLOUT | 普通数据可写, 写数据不会导致阻塞 |
POLLWRNORM | 普通数据可写, 写普通数据不会导致阻塞 |
POLLWRBAND | 优先级带数据可写,写优先数据不会导致阻塞 |
POLLMSGSIGPOLL | 消息可用 |
POLLERR | 发生错误 |
POLLHUP | 发生挂起 |
POLLNVAL | 描述字不是一个打开的文件 |
注意:后三个只能作为描述字的返回结果存储在revents中,而不能作为测试条件用于events中。
此外,revents域中还可能返回下列事件:
POLLER 指定的文件描述符发生错误。
POLLHUP 指定的文件描述符挂起事件。
POLLNVAL 指定的文件描述符非法。
这些事件在events域中无意义,因为它们在合适的时候总是会从revents中返回。
2)第二个参数nfds:要监视的描述符的数目。
3)最后一个参数timeout:是一个用毫秒表示的时间,是指定poll在返回前没有接收事件时应该等待的时间。如果 它的值为-1,poll就永远都不会超时。如果整数值为32个比特,那么最大的超时周期大约是30分钟。
timeout值 | 说明 |
---|---|
INFTIM | 永远等待 |
0 | 立即返回,不阻塞进程 |
>0 | 等待指定数目的毫秒数 |
timeout参数指定等待的毫秒数,无论I/O是否准备好,poll都会返回。timeout指定为负数值表示无限超时,使poll()一直挂起直到一个指定事件发生;timeout为0指示poll调用立即返回并列出准备好I/O的文件描述符,但并不等待其它的事件。这种情况下,poll()就像它的名字那样,一旦选举出来,立即返回。
返回值和错误代码
成功时,poll()返回结构体中revents域不为0的文件描述符个数;如果在超时前没有任何事件发生,poll()返回0;失败时,poll()返回-1,并设置errno为下列值之一
类型 | 含义 |
---|---|
EBADF | 一个或多个结构体中指定的文件描述符无效 |
EFAULTfds | 指针指向的地址超出进程的地址空间 |
EINTR | 请求的事件之前产生一个信号,调用可以重新发起 |
EINVALnfds | 参数超出PLIMIT_NOFILE值 |
ENOMEM | 可用内存不足,无法完成请求 |
一个简单的例子程序: ./testpoll filename1 filename2,读取两个文件的值.
在/root/pro/fd1 /root/pro/fd2中分别有内容,该程序利用poll读取文件中的内容,读取完以后,关闭文件
1234
5678
和
1122
3344
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define BUFSIZE 1024 if this buf size is not big enough, then the information can be lost.
int main(int argc, char *argv[])
{
char buf[BUFSIZE];
int bytes;
struct pollfd *pollfd;
int i=0;
int nummonitor=0;
int numready;
int errno;
char *str;
if(argc != 3)
{
fprintf(stderr,"Usage:the argc num error\n");
exit(1);
}
if((pollfd = (struct pollfd*)calloc(2, sizeof(struct pollfd))) == NULL) //为struct pollfd分配空间
exit(1);
for(i; i<2; i++) //初始化化struct pollfd结构
{
str = (char*)malloc(14*sizeof(char));
memcpy(str,"/root/pro/",14);
strcat(str,argv[i+1]);//注意,需要把路劲信息放到str中,否则opne("/root/pro/argv[i]",O_RDONLY)会出错
printf("str=%s\n",str);//原因在于,在” “之中的argv[i]是字符串,不会用变量代替argv[i].
(pollfd+i)->fd = open(str,O_RDONLY);
if((pollfd+i)->fd >= 0)
fprintf(stderr, "open (pollfd+%d)->fd:%s\n", i, argv[i+1]);
nummonitor++;
(pollfd+i)->events = POLLIN;
}
printf("nummonitor=%d\n",nummonitor);
while(nummonitor > 0)
{
numready = poll(pollfd, 2, -1);
if ((numready == -1) && (errno == EINTR))
continue; //被信号中断,继续等待
else if (numready == -1)
break; //poll真正错误,推出
printf("numready=%d\n",numready);
for (i=0;nummonitor>0 && numready>0; i++)
{
if((pollfd+i)->revents & POLLIN)
{
bytes = read(pollfd[i].fd, buf, BUFSIZE);
numready--;
printf("pollfd[%d]->fd read buf:\n%s \n", i, buf);
nummonitor--;
}
}
}
for(i=0; ifree(pollfd);
return 0;
}
另外一个例子:
3、测出程序
编写一个echo server程序,功能是客户端向服务器发送信息,服务器接收输出并原样发送回给客户端,客户端接收到输出到终端。
服务器端程序如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define IPADDRESS "127.0.0.1"
#define PORT 8787
#define MAXLINE 1024
#define LISTENQ 5
#define OPEN_MAX 1000
#define INFTIM -1
//函数声明
//创建套接字并进行绑定
static int socket_bind(const char* ip,int port);
//IO多路复用poll
static void do_poll(int listenfd);
//处理多个连接
static void handle_connection(struct pollfd *connfds,int num);
int main(int argc,char *argv[])
{
int listenfd,connfd,sockfd;
struct sockaddr_in cliaddr;
socklen_t cliaddrlen; //数据类型"socklen_t"和int应该具有相同的长度
listenfd = socket_bind(IPADDRESS,PORT);
listen(listenfd,LISTENQ);
do_poll(listenfd);
return 0;
}
static int socket_bind(const char* ip,int port)
{
int listenfd;
struct sockaddr_in servaddr;
listenfd = socket(AF_INET,SOCK_STREAM,0);
if (listenfd == -1)
{
perror("socket error:");
exit(1);
}
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET,ip,&servaddr.sin_addr);
servaddr.sin_port = htons(port);
if (bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr)) == -1)
{
perror("bind error: ");
exit(1);
}
return listenfd;
}
static void do_poll(int listenfd)
{
int connfd,sockfd;
struct sockaddr_in cliaddr;
socklen_t cliaddrlen;
struct pollfd clientfds[OPEN_MAX];
int maxi;
int i;
int nready;
//添加监听描述符
clientfds[0].fd = listenfd;
clientfds[0].events = POLLIN;
//初始化客户连接描述符
for (i = 1;i < OPEN_MAX;i++)
clientfds[i].fd = -1;
maxi = 0;
//循环处理
for ( ; ; )
{
//获取可用描述符的个数
nready = poll(clientfds,maxi+1,INFTIM);
if (nready == -1)
{
perror("poll error:");
exit(1);
}
//测试监听描述符是否准备好
if (clientfds[0].revents & POLLIN)
{
cliaddrlen = sizeof(cliaddr);
//接受新的连接
if ((connfd = accept(listenfd,(struct sockaddr*)&cliaddr,&cliaddrlen)) == -1)
{
if (errno == EINTR)
continue;
else
{
perror("accept error:");
exit(1);
}
}
fprintf(stdout,"accept a new client: %s:%d\n", inet_ntoa(cliaddr.sin_addr),cliaddr.sin_port);
//将新的连接描述符添加到数组中
for (i = 1;i < OPEN_MAX;i++)
{
if (clientfds[i].fd < 0)
{
clientfds[i].fd = connfd;
break;
}
}
if (i == OPEN_MAX)
{
fprintf(stderr,"too many clients.\n");
exit(1);
}
//将新的描述符添加到读描述符集合中
clientfds[i].events = POLLIN;
//记录客户连接套接字的个数
maxi = (i > maxi ? i : maxi);
if (--nready <= 0)
continue;
}
//处理客户连接
handle_connection(clientfds,maxi);
}
}
static void handle_connection(struct pollfd *connfds,int num)
{
int i,n;
char buf[MAXLINE];
memset(buf,0,MAXLINE);
for (i = 1;i <= num;i++)
{
if (connfds[i].fd < 0)
continue;
//测试客户描述符是否准备好
if (connfds[i].revents & POLLIN)
{
//接收客户端发送的信息
n = read(connfds[i].fd,buf,MAXLINE);
if (n == 0)
{
close(connfds[i].fd);
connfds[i].fd = -1;
continue;
}
// printf("read msg is: ");
write(STDOUT_FILENO,buf,n);
//向客户端发送buf
write(connfds[i].fd,buf,n);
}
}
}
客户端程序:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAXLINE 1024
#define IPADDRESS "127.0.0.1"
#define SERV_PORT 8787
#define max(a,b) (a > b) ? a : b
static void handle_connection(int sockfd);
int main(int argc,char *argv[])
{
int sockfd;
struct sockaddr_in servaddr;
sockfd = socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERV_PORT);
inet_pton(AF_INET,IPADDRESS,&servaddr.sin_addr);
connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
//处理连接描述符
handle_connection(sockfd);
return 0;
}
static void handle_connection(int sockfd)
{
char sendline[MAXLINE],recvline[MAXLINE];
int maxfdp,stdineof;
struct pollfd pfds[2];
int n;
//添加连接描述符
pfds[0].fd = sockfd;
pfds[0].events = POLLIN;
//添加标准输入描述符
pfds[1].fd = STDIN_FILENO;
pfds[1].events = POLLIN;
for (; ;)
{
poll(pfds,2,-1);///pollfd,nfds_t nfds, int timeout, 一个结构数组, -1毫秒后超时,-1为无限等待
//第0个负责接受,第1个负责发送
if (pfds[0].revents & POLLIN){
n = read(sockfd,recvline,MAXLINE);
if (n == 0)
{
fprintf(stderr,"client: server is closed.\n");
close(sockfd);
}
write(STDOUT_FILENO,recvline,n);
}
//测试标准输入是否准备好
if (pfds[1].revents & POLLIN)
{
n = read(STDIN_FILENO,sendline,MAXLINE);
if (n == 0)
{
shutdown(sockfd,SHUT_WR);
continue;
}
write(sockfd,sendline,n);
}
}
}
https://www.cnblogs.com/laowz/p/6947539.html
最近在写一个socket程序。发现网上对于socket_listen里面的第二个参数的作用解释的都是不是很清楚,所有就将自己的一些理解写出来,让大家参考下。
首先要明白三次握手的。当然能点进来的应该都知道什么是三次握手,这里就不废话了。
当有多个客户端一起请求的时候,服务端不可能来多少就处理多少,这样如果并发太多,就会因为性能的因素发生拥塞,然后造成雪崩。所有就搞了一个队列,先将请求放在队列里面,一个个来。socket_listen里面的第二个参数backlog就是设置这个队列的长度。如果将队列长度设置成10,那么如果有20个请求一起过来,服务端就会先放10个请求进入这个队列,因为长度只有10。然后其他的就直接拒绝。tcp协议这时候不会发送rst给客户端,这样的话客户端就会重新发送SYN,以便能进入这个队列。
如果三次握手完成了,就会将完成三次握手的请求取出来,放入另一个队列中,这样队列就空出一个位置,其他重发SYN的请求就可以进入队列中。
epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。
epoll操作过程需要三个接口,分别如下:
#include
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
(1) int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
(2)int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
(3) int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
epoll对文件描述符的操作有两种模式:LT(level trigger)和ET(edge trigger)。LT模式是默认模式,LT模式与ET模式的区别如下:
LT模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。
ET模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。
ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
编写一个服务器回射程序echo,练习epoll过程。
server.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define IPADDRESS "127.0.0.1"
#define PORT 8787
#define MAXSIZE 1024
#define LISTENQ 5
#define FDSIZE 1000
#define EPOLLEVENTS 100
//函数声明
//创建套接字并进行绑定
static int socket_bind(const char* ip,int port);
//IO多路复用epoll
static void do_epoll(int listenfd);
//事件处理函数
static void handle_events(int epollfd,struct epoll_event *events,int num,int listenfd,char *buf);
//处理接收到的连接
static void handle_accpet(int epollfd,int listenfd);
//读处理
static void do_read(int epollfd,int fd,char *buf);
//写处理
static void do_write(int epollfd,int fd,char *buf);
//添加事件
static void add_event(int epollfd,int fd,int state);
//修改事件
static void modify_event(int epollfd,int fd,int state);
//删除事件
static void delete_event(int epollfd,int fd,int state);
int main(int argc,char *argv[])
{
int listenfd;
listenfd = socket_bind(IPADDRESS,PORT);
listen(listenfd,LISTENQ);
do_epoll(listenfd);
return 0;
}
static int socket_bind(const char* ip,int port)
{
int listenfd;
struct sockaddr_in servaddr;
listenfd = socket(AF_INET,SOCK_STREAM,0);
if (listenfd == -1)
{
perror("socket error:");
exit(1);
}
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET,ip,&servaddr.sin_addr);
servaddr.sin_port = htons(port);
if (bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr)) == -1)
{
perror("bind error: ");
exit(1);
}
return listenfd;
}
static void do_epoll(int listenfd)
{
int epollfd;
struct epoll_event events[EPOLLEVENTS];
int ret;
char buf[MAXSIZE];
memset(buf,0,MAXSIZE);
//创建一个描述符
epollfd = epoll_create(FDSIZE);
//添加监听描述符事件
add_event(epollfd,listenfd,EPOLLIN);
for ( ; ; )
{
//获取已经准备好的描述符事件
ret = epoll_wait(epollfd,events,EPOLLEVENTS,-1);
handle_events(epollfd,events,ret,listenfd,buf);
}
close(epollfd);
}
static void handle_events(int epollfd,struct epoll_event *events,int num,int listenfd,char *buf)
{
int i;
int fd;
//进行选好遍历
for (i = 0;i < num;i++)
{
fd = events[i].data.fd;
//根据描述符的类型和事件类型进行处理
if ((fd == listenfd) &&(events[i].events & EPOLLIN))
handle_accpet(epollfd,listenfd);
else if (events[i].events & EPOLLIN)
do_read(epollfd,fd,buf);
else if (events[i].events & EPOLLOUT)
do_write(epollfd,fd,buf);
}
}
static void handle_accpet(int epollfd,int listenfd)
{
int clifd;
struct sockaddr_in cliaddr;
socklen_t cliaddrlen;
clifd = accept(listenfd,(struct sockaddr*)&cliaddr,&cliaddrlen);
if (clifd == -1)
perror("accpet error:");
else
{
printf("accept a new client: %s:%d\n",inet_ntoa(cliaddr.sin_addr),cliaddr.sin_port);
//添加一个客户描述符和事件
add_event(epollfd,clifd,EPOLLIN);
}
}
static void do_read(int epollfd,int fd,char *buf)
{
int nread;
nread = read(fd,buf,MAXSIZE);
if (nread == -1)
{
perror("read error:");
close(fd);
delete_event(epollfd,fd,EPOLLIN);
}
else if (nread == 0)
{
fprintf(stderr,"client close.\n");
close(fd);
delete_event(epollfd,fd,EPOLLIN);
}
else
{
printf("read message is : %s",buf);
//修改描述符对应的事件,由读改为写
modify_event(epollfd,fd,EPOLLOUT);
}
}
static void do_write(int epollfd,int fd,char *buf)
{
int nwrite;
nwrite = write(fd,buf,strlen(buf));
if (nwrite == -1)
{
perror("write error:");
close(fd);
delete_event(epollfd,fd,EPOLLOUT);
}
else
modify_event(epollfd,fd,EPOLLIN);
memset(buf,0,MAXSIZE);
}
static void add_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_ADD,fd,&ev);
}
static void delete_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_DEL,fd,&ev);
}
static void modify_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_MOD,fd,&ev);
}
client.cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAXSIZE 1024
#define IPADDRESS "127.0.0.1"
#define SERV_PORT 8787
#define FDSIZE 1024
#define EPOLLEVENTS 20
static void handle_connection(int sockfd);
static void handle_events(int epollfd,struct epoll_event *events,int num,int sockfd,char *buf);
static void do_read(int epollfd,int fd,int sockfd,char *buf);
static void do_read(int epollfd,int fd,int sockfd,char *buf);
static void do_write(int epollfd,int fd,int sockfd,char *buf);
static void add_event(int epollfd,int fd,int state);
static void delete_event(int epollfd,int fd,int state);
static void modify_event(int epollfd,int fd,int state);
int main(int argc,char *argv[])
{
int sockfd;
struct sockaddr_in servaddr;
sockfd = socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERV_PORT);
inet_pton(AF_INET,IPADDRESS,&servaddr.sin_addr);
connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
//处理连接
handle_connection(sockfd);
close(sockfd);
return 0;
}
static void handle_connection(int sockfd)
{
int epollfd;
struct epoll_event events[EPOLLEVENTS];
char buf[MAXSIZE];
int ret;
epollfd = epoll_create(FDSIZE);
add_event(epollfd,STDIN_FILENO,EPOLLIN);
for ( ; ; )
{
ret = epoll_wait(epollfd,events,EPOLLEVENTS,-1);
handle_events(epollfd,events,ret,sockfd,buf);
}
close(epollfd);
}
static void handle_events(int epollfd,struct epoll_event *events,int num,int sockfd,char *buf)
{
int fd;
int i;
for (i = 0;i < num;i++)
{
fd = events[i].data.fd;
if (events[i].events & EPOLLIN)
do_read(epollfd,fd,sockfd,buf);
else if (events[i].events & EPOLLOUT)
do_write(epollfd,fd,sockfd,buf);
}
}
static void do_read(int epollfd,int fd,int sockfd,char *buf)
{
int nread;
nread = read(fd,buf,MAXSIZE);
if (nread == -1)
{
perror("read error:");
close(fd);
}
else if (nread == 0)
{
fprintf(stderr,"server close.\n");
close(fd);
}
else
{
if (fd == STDIN_FILENO)
add_event(epollfd,sockfd,EPOLLOUT);
else
{
delete_event(epollfd,sockfd,EPOLLIN);
add_event(epollfd,STDOUT_FILENO,EPOLLOUT);
}
}
}
static void do_write(int epollfd,int fd,int sockfd,char *buf)
{
int nwrite;
nwrite = write(fd,buf,strlen(buf));
if (nwrite == -1)
{
perror("write error:");
close(fd);
}
else
{
if (fd == STDOUT_FILENO)
delete_event(epollfd,fd,EPOLLOUT);
else
modify_event(epollfd,fd,EPOLLIN);
}
memset(buf,0,MAXSIZE);
}
static void add_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_ADD,fd,&ev);
}
static void delete_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_DEL,fd,&ev);
}
static void modify_event(int epollfd,int fd,int state)
{
struct epoll_event ev;
ev.events = state;
ev.data.fd = fd;
epoll_ctl(epollfd,EPOLL_CTL_MOD,fd,&ev);
}
总结:
上篇文章太过幼稚,一派胡言,希望没有误导大家。。我也是菜鸟,学习本身就是一个不断追求真理的过程,希望能谅解:)首先感谢kasicass GG指出错误(已经指导我很多次了,非常感谢~~),然后我又查阅了一些资料,再次整理,more seriously and detailedly~
首先,介绍几种常见的I/O模型及其区别,如下:
blocking I/O
nonblocking I/O
I/O multiplexing (select and poll)
signal driven I/O (SIGIO)
asynchronous I/O (the POSIX aio_functions)
blocking I/O
这个不用多解释吧,阻塞套接字。下图是它调用过程的图示:
重点解释下上图,下面例子都会讲到。首先application调用 recvfrom()转入kernel,注意kernel有2个过程,wait for data和copy data from kernel to user。直到最后copy complete后,recvfrom()才返回。此过程一直是阻塞的。
nonblocking I/O:
与blocking I/O对立的,非阻塞套接字,调用过程图如下:
可以看见,如果直接操作它,那就是个轮询。。直到内核缓冲区有数据。
I/O multiplexing (select and poll)
最常见的I/O复用模型,select。
select先阻塞,有活动套接字才返回。与blocking I/O相比,select会有两次系统调用,但是select能处理多个套接字。
signal driven I/O (SIGIO)
只有UNIX系统支持,感兴趣的课查阅相关资料
与I/O multiplexing (select and poll)相比,它的优势是,免去了select的阻塞与轮询,当有活跃套接字时,由注册的handler处理。
asynchronous I/O (the POSIX aio_functions)
很少有*nix系统支持,windows的IOCP则是此模型
完全异步的I/O复用机制,因为纵观上面其它四种模型,至少都会在由kernel copy data to appliction时阻塞。而该模型是当copy完成后才通知application,可见是纯异步的。好像只有windows的完成端口是这个模型,效率也很出色。
下面是以上五种模型的比较
图片在这里面.
http://blog.csdn.net/shallwake/article/details/5265287
可以看出,越往后,阻塞越少,理论上效率也是最优。
=====================分割线==================================
5种模型的比较比较清晰了,剩下的就是把select,epoll,iocp,kqueue按号入座那就OK了。
select和iocp分别对应第3种与第5种模型,那么epoll与kqueue呢?其实也于select属于同一种模型,只是更高级一些,可以看作有了第4种模型的某些特性,如callback机制。
那么,为什么epoll,kqueue比select高级?
答案是,他们无轮询。因为他们用callback取代了。想想看,当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。
windows or *nix (IOCP or kqueue/epoll)?
诚然,Windows的IOCP非常出色,目前很少有支持asynchronous I/O的系统,但是由于其系统本身的局限性,大型服务器还是在UNIX下。而且正如上面所述,kqueue/epoll 与 IOCP相比,就是多了一层从内核copy数据到应用层的阻塞,从而不能算作asynchronous I/O类。但是,这层小小的阻塞无足轻重,kqueue与epoll已经做得很优秀了。
提供一致的接口,IO Design Patterns
实际上,不管是哪种模型,都可以抽象一层出来,提供一致的接口,广为人知的有ACE,Libevent这些,他们都是跨平台的,而且他们自动选择最优的I/O复用机制,用户只需调用接口即可。说到这里又得说说2个设计模式,Reactor and Proactor。有一篇经典文章http://www.artima.com/articles/io_design_patterns.html值得阅读,Libevent是Reactor模型,ACE提供Proactor模型。实际都是对各种I/O复用机制的封装。
Java nio包是什么I/O机制?
我曾天真的认为java nio封装的是IOCP。。现在可以确定,目前的java本质是select()模型,可以检查/jre/bin/nio.dll得知。至于java服务器为什么效率还不错。。我也不得而知,可能是设计得比较好吧。
=====================分割线==================================
总结一些重点:
只有IOCP是asynchronous I/O,其他机制或多或少都会有一点阻塞。
select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善
epoll, kqueue是Reacor模式,IOCP是Proactor模式。
java nio包是select模型。
```
OVER,写得很累,转载请注明出处,谢谢!
--------------
深入理解epoll这篇文章写的比较好。
[深度理解select、poll和epoll](http://blog.csdn.net/davidsguo008/article/details/73556811)
一旦,我们建立好了tcp连接之后,我们就可以把得到的fd当作文件描述符来使用。
由此网络程序里最基本的函数就是read和write函数了。
写函数:
ssize_t write(int fd, const void*buf,size_t nbytes);
write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数.失败时返回-1. 并设置errno变量. 在网络程序中,当我们向套接字文件描述符写时有两可能.
1)write的返回值大于0,表示写了部分或者是全部的数据. 这样我们用一个while循环来不停的写入,但是循环过程中的buf参数和nbyte参数得由我们来更新。也就是说,网络写函数是不负责将全部数据写完之后在返回的。
2)返回的值小于0,此时出现了错误.我们要根据错误类型来处理. 如果错误为EINTR表示在写的时候出现了中断错误. 如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接). 为了处理以上的情况,我们自己编写一个写函数来处理这几种情况.
int my_write(int fd,void *buffer,int length)
{
int bytes_left;
int written_bytes;
char *ptr;
ptr=buffer;
bytes_left=length;
while(bytes_left>0)
{
/* 开始写*/
written_bytes=write(fd,ptr,bytes_left);
if(written_bytes<=0) /* 出错了*/
{
if(errno==EINTR) /* 中断错误 我们继续写*/
written_bytes=0;
else /* 其他错误 没有办法,只好撤退了*/
return(-1);
}
bytes_left-=written_bytes;
ptr+=written_bytes; /* 从剩下的地方继续写 */
}
return(0);
}
读函数read
ssize_t read(int fd,void *buf,size_t nbyte)
read函数是负责从fd中读取内容.当读成功 时,read返回实际所读的字节数,如果返回的值是0 表示已经读到文件的结束了,小于0表示出现了错误.如果错误为EINTR说明读是由中断引起 的, 如果是ECONNREST表示网络连接出了问题. 和上面一样,我们也写一个自己的读函数.
int my_read(int fd,void *buffer,int length)
{
int bytes_left;
int bytes_read;
char *ptr;
bytes_left=length;
while(bytes_left>0)
{
bytes_read=read(fd,ptr,bytes_read);
if(bytes_read<0)
{
if(errno==EINTR)
bytes_read=0;
else
return(-1);
}
else if(bytes_read==0)
break;
bytes_left-=bytes_read;
ptr+=bytes_read;
}
return(length-bytes_left);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 //blog.csdn.net/linux_wgl/article/details/7856090
原文地址:http://blog.csdn.net/xiaoxi2xin/article/details/5524769
在unix系统调用中,标准输入描述字用stdin,标准输出用stdout,标准出错用stderr表示,但在一些调用函数,引用了STDIN_FILENO表示标准输入才,同样,标准出入用STDOUT_FILENO,标准出错用STDERR_FILENO.
他们的区别: stdin等是FILE *类型,属于标准I/O,在。
STDIN_FILENO等是文件描述符,是非负整数,一般定义为0, 1, 2
属于没有buffer的I/O,直接调用系统调用,在。
下面一个例子是对STDOUT_FIFENO 和STDIN_FILENO的应用:
#include
#define SIZE 100
int main(void)
{
int n;
char buf[SIZE];
//读取标准输入到buf中返回读取字节数
while(n=read(STDIN_FILENO,buf,SIZE))
{
if(n!=write(STDOUT_FILENO,buf,n)) 把buf 写到标准输出中
perror("write error");
}
if(n<0) perror("read error");
return 0;
}
++++++++++++++++++++++++++++++++++++++++++
如果按照常规的使用方法:
fan@fan:~/arm$ gcc -o app stdout.c
fan@fan:~/arm$ ./app
fdfe
fdfe
fefefef
fefefef
//输入一行,马上输出一行,也就是按照原样输出
使用重定向来运行
fan@fan:~/arm$ ./app> data
fefe
fdadfdf
adfdfef
//输入的字符串并不是输出到终端,而是输出到data文件中。
============================================
fan@fan:~/arm$ ./app data
fan@fan:~/arm$
//这一句相当于把stdout.c复制到data中去
++++++++++++++++++++++++++++++++++++++++++++
STDOUT_FILENO和STDIN_FILENO在默认的情况下是终端,
使用ctrl+D来输入文件结束符