在前面的两篇文章Android Binder框架实现之Native层addService详解之请求的发送和Android Binder框架实现之Native层addService详解之请求的处理分别介绍了addService中"请求的发送"和"请求的处理"这两部分,本文将介绍addService请求的最后一部分–请求的反馈。ServiceManager在处理完addService请求之后,添加了一个待处理事务到MediaPlayerService的事务列表中,并将MediaPlayerService唤醒。我们从上次MediaPlayerService休眠的地方开始,看看它被唤醒之后干了些什么。
注意:本文是基于Android 7.xx版本进行介绍的!
从前面的篇章我们可以知道,MediaPlayerService在发送addService请求之后,会阻塞在Binder驱动wait_event_interruptible_exclusive等待被唤醒,那么我们从此处被唤醒说起,继续往下分析。
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{
...
if (wait_for_proc_work) {
...
if (non_block) {
...
} else
//阻塞式读取,阻塞等待事务的发生,此时会被唤醒
ret = wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
} else {
...
}
...
while (1) {
uint32_t cmd;
struct binder_transaction_data tr;
struct binder_work *w;
struct binder_transaction *t = NULL;
//如果当前线程的“待完成工作”不为空,则取出待完成工作
if (!list_empty(&thread->todo))
w = list_first_entry(&thread->todo, struct binder_work, entry);
else if (!list_empty(&proc->todo) && wait_for_proc_work)
w = list_first_entry(&proc->todo, struct binder_work, entry);
else {
...
}
...
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
t = container_of(w, struct binder_transaction, work);
} break;
...
}
if (!t)
continue;
//此时t-buffer-target_node是NULL
if (t->buffer->target_node) {
...
} else {
tr.target.ptr = 0;
tr.cookie = 0;
cmd = BR_REPLY;
}
//交易码
tr.code = t->code;
tr.flags = t->flags;
tr.sender_euid = from_kuid(current_user_ns(), t->sender_euid);
if (t->from) {
struct task_struct *sender = t->from->proc->tsk;
tr.sender_pid = task_tgid_nr_ns(sender,
task_active_pid_ns(current));
} else {
tr.sender_pid = 0;
}
//数据大小
tr.data_size = t->buffer->data_size;
//数据中对象的偏移数组的大小(即对象的个数)
tr.offsets_size = t->buffer->offsets_size;
//数据
tr.data.ptr.buffer = (binder_uintptr_t)(
(uintptr_t)t->buffer->data +
proc->user_buffer_offset);
//数据中对象的偏移数组
tr.data.ptr.offsets = tr.data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));
//将cmd指令写入到ptr,即传递到用户空间
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
//将tr数据拷贝到用户空间
ptr += sizeof(uint32_t);
if (copy_to_user(ptr, &tr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
...
//删除已处理的事务
list_del(&t->work.entry);
t->buffer->allow_user_free = 1;
//设置回复信息
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
...
} else {
t->buffer->transaction = NULL;
kfree(t);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
}
break;
}
done:
//更新bwr.read_comsumed的值
*consumed = ptr - buffer;
...
return 0;
}
此时MediaPlayerService进程被Service Manager从睡梦中唤醒,同时它的待处理事务队列中有Service Manager添加的事务,此时,binder_has_thread_work()为true。因此,MediaPlayerService会继续往下执行。下面我们逐步分析MediaPlayerService被唤醒后的处理流程:
(1) 进入while循环,首先取出待处理事务。
(2) 事务的类型是BINDER_WORK_TRANSACTION,得到对应的binder_transaction*类型指针t之后,跳出switch语句。时t不为NULL,因此继续往下执行。下面的工作的目的,是将t中的数据转移到tr中(tr是事务交互数据包结构体binder_transaction_data对应的指针),然后将指令和tr数据都拷贝到用户空间,让MediaPlayerService读取后进行处理。此时的指令是BR_REPLY。
binder_thread_read()执行完毕之后,共反馈了两个指令到用户空间,BR_NOOP和BR_REPLY。此时MediaPlayerService从内核空间返回,进入用户空间,下面让我们重返用户空间分析。
现在回到MediaPlayerService位于用户空间的进程。它会逐个解析Binder驱动反馈的指令。对于BR_NOOP,MediaPlayerService不会做任何实质性的动作。对于BR_REPLY,我们细看代码分析MediaPlayerService的处理流程。让我们来一起分析IPCThreadState::waitForResponse()函数。
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
uint32_t cmd;
int32_t err;
while (1) {
if ((err=talkWithDriver()) < NO_ERROR) break;
...
cmd = (uint32_t)mIn.readInt32();
...
switch (cmd) {
...
case BR_REPLY:
{
binder_transaction_data tr;
err = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
if (err != NO_ERROR) goto finish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
reply->ipcSetDataReference(
reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
tr.offsets_size/sizeof(binder_size_t),
freeBuffer, this);
} else {
...
}
} else {
...
}
}
goto finish;
...
}
}
finish:
...
return err;
}
此时在在BR_REPLY分支中,先读取出数据,并保存到tr中。由于reply不为null,并且tr.flags & TF_STATUS_CODE为0;因此,会执行reply->ipcSetDataReference()。下面让我们一起分析一下ipcSetDataReference函数。
void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
{
binder_size_t minOffset = 0;
freeDataNoInit();
mError = NO_ERROR;
mData = const_cast<uint8_t*>(data);
mDataSize = mDataCapacity = dataSize;
//ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
mDataPos = 0;
ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
mObjects = const_cast<binder_size_t*>(objects);
mObjectsSize = mObjectsCapacity = objectsCount;
mNextObjectHint = 0;
mOwner = relFunc;
mOwnerCookie = relCookie;
for (size_t i = 0; i < mObjectsSize; i++) {
binder_size_t offset = mObjects[i];
if (offset < minOffset) {
ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
__func__, (uint64_t)offset, (uint64_t)minOffset);
mObjectsSize = 0;
break;
}
minOffset = offset + sizeof(flat_binder_object);
}
scanForFds();
}
通过代码可知ipcSetDataReference()是根据参数的值重新初始化Parcel的数据和对象。让我逐步分析一下。
(1) freeDataNoInit()的目的是释放原有的内存。为接下来保存Binder驱动反馈的数据做准备。
(2) 在Android Binder机制(六) addService详解02之 请求的处理中,ServiceManager反馈数据时,我们知道它对应的BR_REPLY的数据实际上是空的!因此,这里的mDataSize和mObjectsSize都是0。
实际上,Binder驱动反馈给MediaPlayerService的指令就是告诉它addService已经成功处理完毕!
在MediaPlayerService解析完Binder驱动反馈的数据之后,它会层层向上返回。这样,MediaPlayerService::instantiate()也就正式执行完了!
MediaPlayerService::instantiate()执行完毕,但是MediaPlayerService进程似乎还没有进入消息循环中等到Client的请求!那么,它是何时进入消息循环的呢?回到MediaPlayerService进程的main()函数入口中,它后面是通过startThreadPool()进入消息循环的。这部分的内容,我们下一章再来介绍。
int main(int argc __unused, char **argv __unused)
{
...
sp<ProcessState> proc(ProcessState::self());
sp<IServiceManager> sm(defaultServiceManager());
...
MediaPlayerService::instantiate();
ResourceManagerService::instantiate();
...
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
}
写到这里,addService的整个流程也算告一段落了,读者朋友们你们都get了相关技能了吗,说实话我也木有全部get到。所以还是得理解为主,理解设计者的思路,然后跟着代码解读。多看,多分析一定会有意想不到的效果。最后让我们奉上整个时序图,重温一遍。