Android系统进程间通信机制Binder的总体架构由Client、Server、ServiceManager和驱动程序Binder四个组件构成。今天主要来看看ServiceManager的实现吧。
Service Manager是系统中一个独立的进程,它是整个Binder机制的守护进程,用来管理开发者创建的各种Server,并且向Client提供查询Server远程接口的功能。
前面我们说过,在init进程启动的过程中会去解析init.rc文件,然后启动相应的服务或者进程。其中在boot阶段,有如下一段语句:
service servicemanager/system/bin/servicemanager
class core
user system
group system
critical
onrestart restart healthd
onrestart restart zygote
onrestart restart media
onrestart restart surfaceflinger
onrestartrestart drm
由此可见,servicemanager服务还是很重要的,它带了critical标志,即如果该进程连续crash几次,系统会进入恢复模式。而且如果该进程挂了,系统还会重启zygote、surfaceflinger等系统关键进程。其重要性真是不言而喻啊。
Servicemanager的代码在frameworks\native\cmds\servicemanager\service_manager.c中,main函数如下:
int main(int argc, char **argv)
{
/*
struct binder_state
{
int fd; // /dev/binder的文件描述符
void *mapped; // mmap映射出来的地址
unsigned mapsize; // mmap映射的大小
};
/*
struct binder_state *bs;
/*
/* the one magic object */
#define BINDER_SERVICE_MANAGER ((void*) 0)
一个magic对象,用0来标识一个Service Manager
*/
void *svcmgr = BINDER_SERVICE_MANAGER;
// 打开/dev/binder设备,并mmap映射之,大小为128K
bs = binder_open(128*1024);
// 告诉binder驱动我是Service Manager进程
if (binder_become_context_manager(bs)) {
ALOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
svcmgr_handle = svcmgr;
// 循环接受并处理消息
binder_loop(bs, svcmgr_handler);
return 0;
}
首先来看看binder_open的实现,代码很简单,就不详细说明了:
struct binder_state *binder_open(unsigned mapsize)
{
struct binder_state *bs;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return 0;
}
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
fprintf(stderr,"binder: cannot open device (%s)\n",
strerror(errno));
goto fail_open;
}
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
fprintf(stderr,"binder: cannot map device (%s)\n",
strerror(errno));
goto fail_map;
}
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return 0;
}
接着来看binder_become_context_manager的实现:
int binder_become_context_manager(struct binder_state *bs)
{
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
binder_become_context_manager原来是通过ioctl的系统调用来告诉binder驱动自己是MGR进程。
最后,调用binder_loop开始接受消息:
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
/*
binder_write_read结构用来应用层和驱动层传递数据。
struct binder_write_read {
signed long write_size;
signed long write_consumed;
unsigned long write_buffer;
signed long read_size;
signed long read_consumed;
unsigned long read_buffer;
};
*/
struct binder_write_read bwr;
unsigned readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
// 通知binder驱动,我要开始循环接受消息了。
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
// 开始循环接收数据
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
// 通过ioctl获得驱动中的数据
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
// 获得之后开始解析处理
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
具体来看下binder_parse的实现:
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uint32_t *ptr, uint32_t size, binder_handler func)
{
int r = 1;
uint32_t *end = ptr + (size / 4);
while (ptr < end) {
uint32_t cmd = *ptr++;
switch(cmd) {
case BR_NOOP:
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
#if TRACE
fprintf(stderr," %08x %08x\n", ptr[0], ptr[1]);
#endif
ptr += 2;
break;
case BR_TRANSACTION: {
struct binder_txn *txn = (void *) ptr;
if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data, res);
}
ptr += sizeof(*txn) / sizeof(uint32_t);
break;
}
case BR_REPLY: {
struct binder_txn *txn = (void*) ptr;
if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += (sizeof(*txn) / sizeof(uint32_t));
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (void*) *ptr++;
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
如果接收到了消息,那么binder_parse会经过简单的转换,最后还是会调用回调函数svcmgr_handler:
int svcmgr_handler(struct binder_state *bs,
struct binder_txn *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
unsigned len;
void *ptr;
uint32_t strict_policy;
int allow_isolated;
// 确认消息是发给server manager
if (txn->target != svcmgr_handle)
return -1;
…….
switch(txn->code) {
case SVC_MGR_GET_SERVICE:
case SVC_MGR_CHECK_SERVICE:
// 获得当前服务名,s变量为服务名
s = bio_get_string16(msg, &len);
/*
Server manager在其进程空间维护了一个service的全局链表svclist,
do_find_service通过服务名来查找该服务是否存在,并返回给客户端
*/
ptr = do_find_service(bs, s, len, txn->sender_euid);
if (!ptr)
break;
bio_put_ref(reply, ptr);
return 0;
// 其他的server进程来添加服务
case SVC_MGR_ADD_SERVICE:
s = bio_get_string16(msg, &len);
ptr = bio_get_ref(msg);
allow_isolated = bio_get_uint32(msg) ? 1 : 0;
if (do_add_service(bs, s, len, ptr, txn->sender_euid, allow_isolated))
return -1;
break;
// 枚举所有已经注册了的服务名
case SVC_MGR_LIST_SERVICES: {
unsigned n = bio_get_uint32(msg);
si = svclist;
while ((n-- > 0) && si)
si = si->next;
if (si) {
bio_put_string16(reply, si->name);
return 0;
}
return -1;
}
default:
ALOGE("unknown code %d\n", txn->code);
return -1;
}
bio_put_uint32(reply, 0);
return 0;
}
具体来看下添加服务的规程吧:
int do_add_service(struct binder_state *bs,
uint16_t *s, unsigned len,
void *ptr, unsigned uid, int allow_isolated)
{
struct svcinfo *si;
// 参数检查
if (!ptr || (len == 0) || (len > 127))
return -1;
// 根据uid和服务名判断是否可以被注册
if (!svc_can_register(uid, s)) {
ALOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n",
str8(s), ptr, uid);
return -1;
}
// 根据服务名,遍历svclist服务链表
si = find_svc(s, len);
if (si) {
if (si->ptr) {
ALOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED, OVERRIDE\n",
str8(s), ptr, uid);
svcinfo_death(bs, si); // 清理前一个服务
}
si->ptr = ptr; // 赋值新服务
} else {
si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
if (!si) {
ALOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n",
str8(s), ptr, uid);
return -1;
}
si->ptr = ptr;
si->len = len;
memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
si->name[len] = '\0';
si->death.func = svcinfo_death; // 如果server进程挂了,那么调用该函数处理
si->death.ptr = si;
si->allow_isolated = allow_isolated;
si->next = svclist;
svclist = si;
}
binder_acquire(bs, ptr);
binder_link_to_death(bs, ptr, &si->death);
return 0;
}
do_add_service首先会调用svc_can_register函数检测当前要添加的服务是否被允许,函数如下:
int svc_can_register(unsigned uid, uint16_t *name)
{
unsigned n;
// 如果uid为root或者system权限,那么直接放行
if ((uid == 0) || (uid == AID_SYSTEM))
return 1;
// 否则,检查allowed数组
for (n = 0; n < sizeof(allowed) / sizeof(allowed[0]); n++)
if ((uid == allowed[n].uid) && str16eq(name, allowed[n].name))
return 1;
return 0;
}
allowed数组内容如下:
static struct {
unsigned uid;
const char *name;
} allowed[] = {
{ AID_MEDIA, "media.audio_flinger" },
{ AID_MEDIA, "media.log" },
{ AID_MEDIA, "media.player" },
{ AID_MEDIA, "media.camera" },
{ AID_MEDIA, "media.audio_policy" },
{ AID_DRM, "drm.drmManager" },
{ AID_NFC, "nfc" },
{ AID_BLUETOOTH, "bluetooth" },
{ AID_RADIO, "radio.phone" },
{ AID_RADIO, "radio.sms" },
{ AID_RADIO, "radio.phonesubinfo" },
{ AID_RADIO, "radio.simphonebook" },
/* TODO: remove after phone services are updated: */
{ AID_RADIO, "phone" },
{ AID_RADIO, "sip" },
{ AID_RADIO, "isms" },
{ AID_RADIO, "iphonesubinfo" },
{ AID_RADIO, "simphonebook" },
{ AID_MEDIA, "common_time.clock" },
{ AID_MEDIA, "common_time.config" },
{ AID_KEYSTORE, "android.security.keystore" },
};
1. Service Manager能集中管理系统内的所有服务,它能被施加权限控制,并不是任何进程都能注册服务的。
2. Service Manager支持通过字符串名称来查找对应的Service。
3. 由于各种原因的影响,Server进程可能生死无常。如果有了Service Manager做统一的管理,那么Client只要向Service Manager做查询,就能得到Server的最新信息。