POJ1106->叉积判断点在直线的左右

POJ1106->叉积判断点在直线的左右


题意:

给定平面上一些点的坐标,有一个半径固定,圆心固定且可以旋转的半圆形平面,求这个平面能覆盖到的最大点的数量。

题解:

由于圆心半径一定,所以有效的点的坐标即是在这个圆形区域内的点的坐标,可以开个数组记录一下,之后可以通过枚举圆心和这些有效点构成的直线,并通过叉乘来统计每次在这条直线左侧的点的数量来更新答案。

代码:

#include 
#include 
#include 
#include
using namespace std;
#define  MAX 50005
const double eps = 1e-8;
double r;
int sgn(double x)
{
    if (fabs(x) < eps) return 0;
    if (x < 0) return -1;
    else return 1;
}
struct Point
{
    double x, y;
    Point() {}
    Point(double _x, double _y)
    {
        x = _x; y = _y;
    }
    Point operator - (const Point &b) const
    {
        return Point(x - b.x, y - b.y);
    }
    int operator ^ (const Point &b) const
    {
        return x*b.y - y*b.x;
    }
    int operator * (const Point &b) const
    {
        return x*b.x + y*b.y;
    }
};
struct Line
{
    Point s, e;
    Line() {}
    Line(Point _s, Point _e)
    {
        s = _s; e = _e;
    }
};
Point point[MAX];
double xmult(Point p0, Point p1, Point p2) //叉积p0p1 X p0p2
{
    //cout << ((p1 - p0) ^ (p2 - p0)) << endl;
    return (p1 - p0) ^ (p2 - p0);
}
bool dist(double x, double y)
{
    double d = (point[0].x - x)*(point[0].x - x) + (point[0].y - y)*(point[0].y - y);
    //cout << "d:" << d << endl;
    if (d < r * r || fabs(d - r * r) < eps)
        return true;
    return false;
}
int main()
{
    double x, y;
    while (scanf("%lf%lf%lf", &x, &y, &r) != EOF)
    {
        if (r < 0) break;
        //cout <<"r:"<< r*r << endl;
        int n, cnt = 1, ans = 0, temp;
        point[0].x = x;
        point[0].y = y;
        scanf("%d", &n);
        while (n--)
        {
            scanf("%lf%lf", &x, &y);
            if (dist(x, y))
            {
                point[cnt].x = x;
                point[cnt++].y = y;
            }
        }
        for (int i = 1; i < cnt; i++)
        {
            temp = 1;
            Line line = Line(Point(point[0].x, point[0].y), Point(point[i].x, point[i].y));
            for (int j = 1; j < cnt; j++)
            {
                //cout << xmult(point[i],line.s, line.e) << endl;
                if (j != i && xmult(line.s, line.e,point[j] ) <= 0)
                    temp++;
            }
            ans = max(ans, temp);
        }
        printf("%d\n", ans);
    }
    return 0;
}

你可能感兴趣的:(POJ,计算几何)