向量的点乘与叉乘

a ⃗ = ( x 1 , y 1 ) \vec{a} = \left (x_1,y_1 \right ) a =(x1,y1) b ⃗ = ( x 2 , y 2 ) \vec{b} = (x_2,y_2) b =(x2,y2),则有

点乘

定义

a ⋅ b = x 1 x 2 + y 1 y 2 a\cdot{b} =x_1x_2+y_1y_2 ab=x1x2+y1y2

点乘的推导

θ \theta θ a ⃗ \vec{a} a b ⃗ \vec{b} b 之间的夹角, θ 1 \theta_1 θ1 a ⃗ \vec{a} a 与x轴所成的夹角, θ 2 \theta_2 θ2 b ⃗ \vec{b} b 与x轴所成的夹角, θ = θ 1 + θ 2 \theta=\theta_1+\theta_2 θ=θ1+θ2
a ⋅ b = x 1 x 2 + y 1 y 2 a\cdot{b} = x_1x_2+y_1y_2 ab=x1x2+y1y2
a ⋅ b = ∣ a ⃗ ∣ c o s θ 1 ∗ ∣ b ⃗ ∣ c o s θ 2 + ∣ a ⃗ ∣ s i n θ 1 ∗ ∣ b ⃗ ∣ s i n θ 2 a\cdot{b} =|\vec{a}|cos\theta_1*|\vec{b}|cos\theta_2+|\vec{a}|sin\theta_1*|\vec{b}|sin\theta_2 ab=a cosθ1b cosθ2+a sinθ1b sinθ2
a ⋅ b = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ( c o s θ 1 c o s θ 2 + s i n θ 1 s i n θ 2 ) a\cdot{b}=|\vec{a}||\vec{b}|(cos\theta_1cos\theta_2+sin\theta_1sin\theta_2) ab=a b (cosθ1cosθ2+sinθ1sinθ2)
由和角公式得

a ⋅ b = ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ a\cdot{b} =|\vec{a}||\vec{b}|cos\theta ab=a b cosθ

应用

1.点乘应用于求2个向量的夹角或者求一个向量在另一个向量的夹角
2. 可以求一个向量在另一个向量的投影
v ∣ ∣ = n ∣ v ∣ ∣ ∣ ∣ n ∣ \mathbf{v}_{||} = \mathbf{n}\frac{\left |\mathbf{v}_{||} \right |}{\left | \mathbf{n} \right |} v=nnv
cos ⁡ θ = ∣ v ∣ ∣ ∣ ∣ v ∣ \cos{\theta} = \frac{|\mathbf{v_{||}}|}{|\mathbf{v}|} cosθ=vv
∣ v ∣ ∣ ∣ = cos ⁡ θ ∣ v ∣ |\mathbf{v_{||}}| =\cos{\theta}|\mathbf{v}| v=cosθv
∣ v ∣ ∣ ∣ |\mathbf{v_{||}}| v带入一式得
∣ v ∣ ∣ ∣ = n ∣ v ∣ cos ⁡ θ ∣ n ∣ |\mathbf{v_{||}}| =\mathbf{n}\frac{|\mathbf{v}|\cos{\theta}}{|\mathbf{n}|} v=nnvcosθ
∣ v ∣ ∣ ∣ = n ∣ v ∣ ∣ n ∣ cos ⁡ θ ∣ n ∣ 2 |\mathbf{v_{||}}| =\mathbf{n}\frac{|\mathbf{v}||\mathbf{n}|\cos{\theta}}{|\mathbf{n}|^2} v=nn2vncosθ
∣ v ∣ ∣ ∣ = n v ⋅ n ∣ n ∣ 2 |\mathbf{v_{||}}| =\mathbf{n}\frac{\mathbf{v}\cdot\mathbf{n}}{|\mathbf{n}|^2} v=nn2vn

叉乘

定义

i,j,k分别为x,y,z上面的单位向量
a ⃗ × b ⃗ = ∣ i j k x 1 y 1 z 1 x 2 y 2 z 2 ∣ \vec{a}\times\vec{b} =\begin{vmatrix} i& j &k \\ x_1& y_1 &z_1 \\ x_2&y_2 &z_2 \end{vmatrix} a ×b =ix1x2jy1y2kz1z2

a ⃗ × b ⃗ = ( y 1 z 2 − z 1 y 2 ) i ⃗ + ( z 1 x 2 − x 1 z 2 ) j ⃗ + ( x 1 y 2 − y 1 x 2 ) k ⃗ \vec{a}\times\vec{b} = (y_1z_2-z_1y_2)\vec{i}+(z_1x_2-x_1z_2)\vec{j}+(x_1y_2-y_1x_2)\vec{k} a ×b =(y1z2z1y2)i +(z1x2x1z2)j +(x1y2y1x2)k

向量积

a ⃗ × b ⃗ \vec{a}\times\vec{b} a ×b 的向量积为

∣ a ⃗ ∣ ∣ b ⃗ ∣ s i n θ |\vec{a}||\vec{b}|sin\theta a b sinθ

即为 a ⃗ \vec{a} a b ⃗ \vec{b} b 所形成的平行形的面积

你可能感兴趣的:(#,数学)