HDU多校7 - 6853 Jogging(bfs+结论)

题目链接:点击查看

题目大意:在二维平面中有一个点 ( x , y ) ,规定 “ 好点 ” 的定义是,gcd( x , y ) > 1 ,现在从点 ( x , y ) 开始,每一次都能等概率的选择:

  1. 去周围八个方向中的“好点”
  2. 停留在原地不动

现在问在走无穷多次步数后,能够从点 ( x , y ) 出发再回到点 ( x , y ) 的概率是多少

题目分析:比赛时稍微打了个表,感觉是暴力bfs出所有点然后计算答案,主要是答案不会计算,就放掉了,因为 1e12 以内的相邻两个素数之差最大也不过几百,对应到二维平面中最多也就只有几万个点,所以可以暴力bfs出所有点

关于答案的计算,是一个结论,题解说的是“图上随机游走”算法,但我找不到相关博客去学习,无奈只能背过结论以防以后再遇到了

结论就是在建出无向图后,答案就是 “起点的度数 + 1 ” 除以 “总度数 + n”

代码:
 

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
 
typedef long long LL;
 
typedef unsigned long long ull;
 
const int inf=0x3f3f3f3f;
 
const int N=1e5+100;

const int b[8][2]={0,1,0,-1,1,0,-1,0,1,1,-1,-1,-1,1,1,-1};

set>vis;

void bfs(LL x,LL y)
{
	int ans1=0,ans2=0;
	queue>q;
	q.emplace(x,y);
	vis.emplace(x,y);
	while(q.size())
	{
		tie(x,y)=q.front();
		q.pop();
		if(x==y)//如果遍历到对角线的话,答案为0/1 
		{
			ans1=0,ans2=1;
			break;
		}
		ans2++;//统计有多少个点:ans2中的+n 
		for(int i=0;i<8;i++)
		{
			LL xx=x+b[i][0];
			LL yy=y+b[i][1];
			if(__gcd(xx,yy)==1)
				continue;
			ans2++;//记录度数
			if(vis.count(make_pair(xx,yy)))
				continue;
			vis.emplace(xx,yy);
			q.emplace(xx,yy); 
		}
		if(!ans1)//记录(起点度数+1)的答案 
			ans1=ans2;
	}
	int gcd=__gcd(ans1,ans2);
	ans1/=gcd,ans2/=gcd;
	printf("%d/%d\n",ans1,ans2);
}

int main()
{
#ifndef ONLINE_JUDGE
//  freopen("data.in.txt","r",stdin);
//  freopen("data.out.txt","w",stdout);
#endif
//  ios::sync_with_stdio(false);
	int w;
	cin>>w;
	while(w--)
	{
		LL x,y;
		scanf("%lld%lld",&x,&y);
		bfs(x,y);
	}















   return 0;
}

 

你可能感兴趣的:(bfs)