spring cloud stream配置多个kafka binders

实际工作中可能在一个工程里面同时连接多个不同的kafka集群读写数据,spring cloud stream也提供了类似的配置方式,首先给出一个demo配置:

spring:
  cloud:
    stream:
      #指定用kafka stream来作为默认消息中间件
#      default-binder: kafka
#      kafka:
#        #来自KafkaBinderConfigurationProperties
#        binder:
#          brokers: name87:9094
#          zkNodes: name85:2181,name86:2181,name87:2181/kafka0101
#          #如果需要传递自定义header信息,需要在此处声明,不然自定义消息头是不会出现在最终消息当中的
##          headers: myType
#          configuration:
#            auto:
#              offset:
#                #可以设置原生kafka属性,比如设置新的消费组从最新的offset开始消费
#                reset: latest
      #属性来自BindingProperties
      bindings:
        #与@StreamListener注解中的value一致,是绑定的渠道名
        input_1:
          binder: kafka1
          consumer:
            headerMode: raw
          producer:
            headerMode: raw
          #绑定的kafka topic名称为test
          destination: cloud-test10
          #消费组
#          group: cloud-test2-group1
#          content-type: application/json
        input_2:
          binder: kafka2
          consumer:
            headerMode: raw
          producer:
            headerMode: raw
         #绑定的kafka topic名称为test
          destination: cloud-test10
           #消费组
        # group: cloud-test2-group1
#          content-type: application/json
        output_1:
          binder: kafka1
          consumer:
            headerMode: raw
          producer:
            headerMode: raw
          destination: cloud-test10
#          content-type: application/json
        output_2:
          binder: kafka2
          consumer:
            headerMode: raw
          producer:
            headerMode: raw
          destination: cloud-test10
      binders:
        kafka1:
          type: kafka
          environment:
            spring:
              cloud:
                stream:
                  kafka:
                    binder:
                      brokers: name87:9094
                      zkNodes: name85:2181,name86:2181,name87:2181/kafka0101
        kafka2:
          type: kafka
          environment:
            spring:
              cloud:
                stream:
                  kafka:
                    binder:
                      brokers: name85:9094
                      zkNodes: name85:2181,name86:2181,name87:2181/kafkatest0101
这里我们配置了两个binders:kafka1 和kafka2,分别连接的两个不同的kafka broker。bindings部分分别定义了两组input、output channel, input_1和output_1映射到kafka1,input_2和output_2映射到kafka2.



定义输入输出渠道:

import org.springframework.cloud.stream.annotation.Input;
import org.springframework.messaging.SubscribableChannel;

public interface MySink {

    //接收队列1
    String INPUT_1 = "input_1";

    //接收队列1
    String INPUT_2 = "input_2";

    @Input(MySink.INPUT_1)
    SubscribableChannel input1();

    @Input(MySink.INPUT_2)
    SubscribableChannel input2();
}
import org.springframework.cloud.stream.annotation.Output;
import org.springframework.messaging.MessageChannel;

public interface MySource {

    //发送队列1
    String OUTPUT_1 = "output_1";

    String OUTPUT_2 = "output_2";

    @Output(MySource.OUTPUT_1)
    MessageChannel output1();

    @Output(MySource.OUTPUT_2)
    MessageChannel output2();
}

定义一个controller用来测试发送消息:

import com.example.kafkastreamdemo.model.MyModel;
import com.example.kafkastreamdemo.source.MySource;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.messaging.support.MessageBuilder;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class MyController {
    private final Logger logger = LoggerFactory.getLogger(MyController.class);


    @Autowired
    private MySource source;

    @RequestMapping("/send")
    public void sendMessage(@RequestParam("type") String type, @RequestParam("message") String message) {
        try {
            MyModel myModel = new MyModel(message);

//            source.output1().send(MessageBuilder.createMessage(myModel, new MessageHeaders(Collections.singletonMap("myType", type))));
            source.output1().send(MessageBuilder.withPayload(myModel).setHeader("myType", type).build());
        } catch (Exception e) {
            logger.info("消息发送失败,原因:" + e);
            e.printStackTrace();
        }
    }

    @RequestMapping("/send2")
    public void sendMessage2(@RequestParam("message") String message) {
        try {
            source.output2().send(MessageBuilder.withPayload(message).build());
        } catch (Exception e) {
            logger.info("消息发送失败,原因:" + e);
            e.printStackTrace();
        }
    }
}

/send往kafka1集群发送消息,/send2将往kafka2集群发送消息
为了印证这一点,我们在增加一个消费者类用来分别消费两个集群的消息:

import com.example.kafkastreamdemo.sink.MySink;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.cloud.stream.annotation.StreamListener;

@EnableBinding(MySink.class)
public class KafkaReceiver {

    private static Logger logger = LoggerFactory.getLogger(KafkaReceiver.class);

//    @StreamListener(value = MySink.INPUT_1) //可以只过滤header中有type=foo的消息
//    @SendTo(MySource.OUTPUT_2) //可以将返回结果转发到另外一个topic
//    public MyModel receive(MyModel payload) {
//        logger.info("received:" + payload.getMessage());
//        MyModel myModel = new MyModel("received:" + payload.getMessage());
//        return myModel;
//    }
//
//    //可以只过滤header中有type=foo的消息,有condition的话,方法不能有返回值
//    @StreamListener(value = MySink.INPUT_2, condition = "headers['myType']=='foo'")
//    public void receiveByHeaderCondition(MyModel payload) {
//        logger.info("received header=foo message:" + payload.getMessage());
//    }


    @StreamListener(value = MySink.INPUT_1) //可以只过滤header中有type=foo的消息
    public void receive(String payload) {
        logger.info("INPUT_1 received:" + payload);
    }

    @StreamListener(value = MySink.INPUT_2)
    public void receive2(String payload) {
        logger.info("INPUT_2 received:" + payload);
    }
}
receive方法从kafka1中消费消息,receive2方法从kafka2中消费消息。


整个工程目录结构如下:

spring cloud stream配置多个kafka binders_第1张图片

参考官方资料:http://cloud.spring.io/spring-cloud-static/Dalston.SR3/#multiple-binders













你可能感兴趣的:(spring,cloud)