思科VPP源码分析(feature机制分析)

基本概念

早期的VPP本身的node框架比较固定,各个node之间逻辑连接已经固化。为此新版本增加了feature机制,
每个feature是一个node,用户可以启用/停止某个或某些feature。
用户也可以自己写插件,把自定义node(自己的业务逻辑)加入到指定位置。

vnet_feature_arc_registration_t
vpp将feature分成不同的组,每组feature称为一个arc。arc中的feature按照代码指定的顺序串接起来。arc结构将记录这组feature的起始node和结束node。系统初始化时完成每个feature的连接。
VNET_FEATURE_ARC_INIT宏用来注册arc。
在arc中指定的起始node中,必须调用vnet_feature_arc_start函数,才能正式进入feature机制业务流程,该函数会将下一跳强行指定为arc中的下一个feature。

vnet_feature_registration_t
一个feature等价于一个node,用户通过VNET_FEATURE_INIT宏定义自己的feature,指定需要加入哪个arc,以及在arc中的哪个相对位置。每个feature都可以通过外部命令行启用/停止。

关键函数

VNET_FEATURE_ARC_INIT和VNET_FEATURE_ARC_INIT宏将arc和feature保存到全局变量feature_main中。此时arc和feature还未被”加工”,只是基本的原料。
clib_error_t *vnet_feature_init
将把arc和feature初始化,并组织成最终的数据结构填充到vnet_feature_main_t feature_main中,代码比较简单。这里只对vnet_feature_main_t 描述即可。

typedef struct
{
  /** feature arc configuration list */
  //VNET_FEATURE_ARC_INIT宏中注册的arc保存在这里,顺序不定,也没有意义。
  vnet_feature_arc_registration_t *next_arc;
  /*vnet_feature_init()中来初始化该成员,把arc按名字组织成hash表,为何要用双重指针???
  博主认为是bug,后面明明是当hash表用么。又不是hash数组*/
  uword **arc_index_by_name;

  /** feature path configuration lists */
  VNET_FEATURE_ARC_INIT宏中注册的feature保存在这里,顺序不定,也没有意义。
  vnet_feature_registration_t *next_feature;
  /*vnet_feature_init()中来初始化该成员,把feature分配到不同arc中,并且根据
  before和after变量来决定feature顺序。这里看作是一个数组,用arc的index做索引*/
  vnet_feature_registration_t **next_feature_by_arc;
  /*vnet_feature_init()中来初始化该成员,把feature按名字组织成hash表数组,arc的index索引到
  对应hash表,node name来做hash表的key*/
  uword **next_feature_by_name;

  /** feature config main objects */
  vnet_feature_config_main_t *feature_config_mains;

  /** Save partial order results for show command */
  char ***feature_nodes;

  /** bitmap of interfaces which have driver rx features configured */
  /*bitmap数组,arc的index索引对应bitmap表,决定该网卡是否启用了该arc中的feature*/
  uword **sw_if_index_has_features;

  /** feature reference counts by interface */
  i16 **feature_count_by_sw_if_index;

  /** Feature arc index for device-input */ 
  /*从收包开始就使用feature机制了,这个变量给收包驱动用。追踪了下代码,这个变量属于device_input_node这个node,但是这个node业务函数为空,而且状态是VLIB_NODE_STATE_DISABLED。那这是干什么用的呢?层层追踪,原来这个node纯粹是个dump node,但是它是一个arc起点。这个arc的index保存在了下面变量中。然后真正的网卡收包node中会借用这个index当成自己的,调用vnet_feature_start_device_input_x1这类函数,开始了feature之旅。真TMD恶心,代码还能写的更难懂点么。*/
  u8 device_input_feature_arc_index;

  /** convenience */
  vlib_main_t *vlib_main;
  vnet_main_t *vnet_main;
} vnet_feature_main_t;

vnet_feature_arc_init 把属于某arc的无序的feature排序成有序状态。feature注册时可以指定在某些node前面,和某些node后面。

clib_error_t *
vnet_feature_arc_init (vlib_main_t * vm,
               vnet_config_main_t * vcm,
               char **feature_start_nodes,
               int num_feature_start_nodes,
               vnet_feature_registration_t * first_reg,
               char ***in_feature_nodes)
{
  uword *index_by_name;
  uword *reg_by_index;
  u8 **node_names = 0;
  u8 *node_name;
  char **these_constraints;
  char *this_constraint_c;
  u8 **constraints = 0;
  u8 *constraint_tuple;
  u8 *this_constraint;
  u8 **orig, **closure;
  uword *p;
  int i, j, k;
  u8 *a_name, *b_name;
  int a_index, b_index;
  int n_features;
  u32 *result = 0;
  vnet_feature_registration_t *this_reg = 0;
  char **feature_nodes = 0;
  hash_pair_t *hp;
  u8 **keys_to_delete = 0;

  index_by_name = hash_create_string (0, sizeof (uword));
  reg_by_index = hash_create (0, sizeof (uword));

  this_reg = first_reg;

  /* pass 1, collect feature node names, construct a before b pairs */
  while (this_reg)
    {
      node_name = format (0, "%s%c", this_reg->node_name, 0);
      //vec_len (node_names) 指的是当前node_names数组中元素个数
      hash_set (reg_by_index, vec_len (node_names), (uword) this_reg);

      //现在feature用index来代表了
      hash_set_mem (index_by_name, node_name, vec_len (node_names));

      vec_add1 (node_names, node_name);

      //runs_before是个数组,可以保存有多个node。
      these_constraints = this_reg->runs_before;
      while (these_constraints && these_constraints[0])
    {
      this_constraint_c = these_constraints[0];

      constraint_tuple = format (0, "%s,%s%c", node_name,
                     this_constraint_c, 0);
      vec_add1 (constraints, constraint_tuple);
      these_constraints++;
    }

    //runs_after是个数组,可以保存有多个node。
      these_constraints = this_reg->runs_after;
      while (these_constraints && these_constraints[0])
    {
      this_constraint_c = these_constraints[0];

      constraint_tuple = format (0, "%s,%s%c",
                     this_constraint_c, node_name, 0);
      vec_add1 (constraints, constraint_tuple);
      these_constraints++;
    }

      this_reg = this_reg->next;
    }
  //至此,把feature之间顺序关系表达为"A,B"字符串,代表A在B前面。

  //其实就是该arc中所有feature个数
  n_features = vec_len (node_names);
  //可以看作生成一个(n_features X n_features)的二维数组
  orig = clib_ptclosure_alloc (n_features);

  for (i = 0; i < vec_len (constraints); i++)
    {
      this_constraint = constraints[i];

      if (comma_split (this_constraint, &a_name, &b_name))
    return clib_error_return (0, "comma_split failed!");

      p = hash_get_mem (index_by_name, a_name);
      /*
       * Note: the next two errors mean that something is
       * b0rked. As in: if you code "A depends on B," and you forget
       * to define a FEATURE_INIT macro for B, you lose.
       * Nonexistent graph nodes are tolerated.
       */
      if (p == 0)
    return clib_error_return (0, "feature node '%s' not found", a_name);
      a_index = p[0];

      p = hash_get_mem (index_by_name, b_name);
      if (p == 0)
    return clib_error_return (0, "feature node '%s' not found", b_name);
      b_index = p[0];

      /* add a before b to the original set of constraints */
      orig[a_index][b_index] = 1;
      vec_free (this_constraint);
    }

  /* Compute the positive transitive closure of the original constraints */
  closure = clib_ptclosure (orig);

  /* Compute a partial order across feature nodes, if one exists. */
again:
  for (i = 0; i < n_features; i++)
    {
      for (j = 0; j < n_features; j++)
    {
      if (closure[i][j])
        goto item_constrained;
    }
      /* Item i can be output */
      vec_add1 (result, i);
      {
    for (k = 0; k < n_features; k++)
      closure[k][i] = 0;
    /*
     * Add a "Magic" a before a constraint.
     * This means we'll never output it again
     */
    closure[i][i] = 1;
    goto again;
      }
    item_constrained:
      ;
    }

  /* see if we got a partial order... */
  if (vec_len (result) != n_features)
    return clib_error_return (0, "%d feature_init_cast no partial order!");
  //到这里,feature的顺序关系就计算成功了。保存在result中,每个feature用index代表。
  /*
   * We win.
   * Bind the index variables, and output the feature node name vector
   * using the partial order we just computed. Result is in stack
   * order, because the entry with the fewest constraints (e.g. none)
   * is output first, etc.
   */

  //把feature索引按顺序转换成对应的vnet_feature_registration_t信息,保存在feature_nodes中
  for (i = n_features - 1; i >= 0; i--)
    {
      p = hash_get (reg_by_index, result[i]);
      ASSERT (p != 0);
      this_reg = (vnet_feature_registration_t *) p[0];
      if (this_reg->feature_index_ptr)
    *this_reg->feature_index_ptr = n_features - (i + 1);
      this_reg->feature_index = n_features - (i + 1);
      vec_add1 (feature_nodes, this_reg->node_name);
    }

  /* Set up the config infrastructure */
  /*feature顺序现在保存在feature_nodes中,现在要把这个关系保存到vnet_config_main_t中了。
  注意每个arc都有一份自己的vnet_config_main_t*/
  vnet_config_init (vm, vcm,
            feature_start_nodes,
            num_feature_start_nodes,
            feature_nodes, vec_len (feature_nodes));

  /* Save a copy for show command */
  *in_feature_nodes = feature_nodes;

  /* Finally, clean up all the shit we allocated */
  /* *INDENT-OFF* */
  hash_foreach_pair (hp, index_by_name,
  ({
    vec_add1 (keys_to_delete, (u8 *)hp->key);
  }));
  /* *INDENT-ON* */
  hash_free (index_by_name);
  for (i = 0; i < vec_len (keys_to_delete); i++)
    vec_free (keys_to_delete[i]);
  vec_free (keys_to_delete);
  hash_free (reg_by_index);
  vec_free (result);
  clib_ptclosure_free (orig);
  clib_ptclosure_free (closure);
  return 0;
}

至此,feature已经计算好了顺序,但是还是没有真正把各个feature连接起来。连接各个feature的真正工作,最终交由vnet_config_add_feature()vnet_config_del_feature()完成。


u32
vnet_config_add_feature (vlib_main_t * vm,
             vnet_config_main_t * cm,
             u32 config_string_heap_index,
             u32 feature_index,
             void *feature_config, u32 n_feature_config_bytes)
{
  vnet_config_t *old, *new;
  vnet_config_feature_t *new_features, *f;
  u32 n_feature_config_u32s;
  u32 node_index = vec_elt (cm->node_index_by_feature_index, feature_index);

  if (node_index == ~0)        // feature node does not exist
    return config_string_heap_index;    // return original config index

  if (config_string_heap_index == ~0)
    {
      old = 0;
      new_features = 0;
    }
  else
    {
      u32 *p = vnet_get_config_heap (cm, config_string_heap_index);
      old = pool_elt_at_index (cm->config_pool, p[-1]);
      new_features = old->features;
      if (new_features)
    new_features = duplicate_feature_vector (new_features);
    }

  //现有的feature基础上增加参数中传来的新feature。注意每个feature都是这么一个个添加进来的。
  vec_add2 (new_features, f, 1);
  f->feature_index = feature_index;
  f->node_index = node_index;

  //不同feature可能有自己独特的config内容,因此参数中的feature_config和n_feature_config_bytes
  就是用来干这事的,保存在f->feature_config中,没有私有内容,则计算出来为0。
  n_feature_config_u32s =
    round_pow2 (n_feature_config_bytes,
        sizeof (f->feature_config[0])) /
    sizeof (f->feature_config[0]);
  vec_add (f->feature_config, feature_config, n_feature_config_u32s);

  /* Sort (prioritize) features. */
  //上文所知,feature的index也代表着在arc中的顺序,这里排下序。
  if (vec_len (new_features) > 1)
    vec_sort_with_function (new_features, feature_cmp);

  if (old)
    remove_reference (cm, old);

  //开始干活了,连接每个feature。config内存也会更新
  new = find_config_with_features (vm, cm, new_features);
  new->reference_count += 1;

  /*
   * User gets pointer to config string first element
   * (which defines the pool index
   * this config string comes from).
   */
  vec_validate (cm->config_pool_index_by_user_index,
        new->config_string_heap_index + 1);
  cm->config_pool_index_by_user_index[new->config_string_heap_index + 1]
    = new - cm->config_pool;
  return new->config_string_heap_index + 1;
}

u32
vnet_config_del_feature (vlib_main_t * vm,
             vnet_config_main_t * cm,
             u32 config_string_heap_index,
             u32 feature_index,
             void *feature_config, u32 n_feature_config_bytes)
{
  vnet_config_t *old, *new;
  vnet_config_feature_t *new_features, *f;
  u32 n_feature_config_u32s;

  {
    /*每个feature组合都有一个对应的config内存。*/
    u32 *p = vnet_get_config_heap (cm, config_string_heap_index);
    /*config内存第一个32bit,保存了该config的索引号。这代码很恶心,作者为啥不弄个结构出来,
    还好懂些。*/
    old = pool_elt_at_index (cm->config_pool, p[-1]);
  }

  n_feature_config_u32s =
    round_pow2 (n_feature_config_bytes,
        sizeof (f->feature_config[0])) /
    sizeof (f->feature_config[0]);

  /* Find feature with same index and opaque data. */
  //找到要删除的目标feature
  vec_foreach (f, old->features)
  {
    if (f->feature_index == feature_index
    && vec_len (f->feature_config) == n_feature_config_u32s
    && (n_feature_config_u32s == 0
        || !memcmp (f->feature_config, feature_config,
            n_feature_config_bytes)))
      break;
  }

  /* Feature not found. */
  if (f >= vec_end (old->features))
    return config_string_heap_index;    // return original config index

  //生成一组新feature,不包含目标feature。
  new_features = duplicate_feature_vector (old->features);
  f = new_features + (f - old->features);
  vnet_config_feature_free (f);
  vec_delete (new_features, 1, f - new_features);

  /* must remove old from config_pool now as it may be expanded and change
     memory location if the following function find_config_with_features()
     adds a new config because none of existing config's has matching features
     and so can be reused */
  remove_reference (cm, old);
  //新生成的feature重新连接下,config内存也会更新
  new = find_config_with_features (vm, cm, new_features);
  new->reference_count += 1;

  vec_validate (cm->config_pool_index_by_user_index,
        new->config_string_heap_index + 1);
  cm->config_pool_index_by_user_index[new->config_string_heap_index + 1]
    = new - cm->config_pool;
  return new->config_string_heap_index + 1;
}


static vnet_config_t *
find_config_with_features (vlib_main_t * vm,
               vnet_config_main_t * cm,
               vnet_config_feature_t * feature_vector)
{
  u32 last_node_index = ~0;
  vnet_config_feature_t *f;
  u32 *config_string;
  uword *p;
  vnet_config_t *c;

  config_string = cm->config_string_temp;
  cm->config_string_temp = 0;
  if (config_string)
    _vec_len (config_string) = 0;

  vec_foreach (f, feature_vector)
  {
    /* Connect node graph. */
    //按顺序连接各个node
    f->next_index = add_next (vm, cm, last_node_index, f->node_index);
    last_node_index = f->node_index;

    /* Store next index in config string. */
    //下一个node在本node中的slot号,保存进config_string
    vec_add1 (config_string, f->next_index);

    /* Store feature config. */
    //slot号后面还可以保存本node特有的config信息,可以为0大小
    vec_add (config_string, f->feature_config, vec_len (f->feature_config));
  }

  /* Terminate config string with next for end node. */
  //确保最终连接到end node
  if (last_node_index == ~0 || last_node_index != cm->end_node_index)
    {
      u32 next_index = add_next (vm, cm, last_node_index, cm->end_node_index);
      vec_add1 (config_string, next_index);
    }

  /* See if config string is unique. */
  //看看hash表里是不是有同样的config_string,注意这里比较的是config_string内容,不是地址
  p = hash_get_mem (cm->config_string_hash, config_string);
  if (p)
    {
      /* Not unique.  Share existing config. */
      //大多数情况下config_string不会重复,除非旧的还被别的模块引用了没释放,那这里就继续引用旧的释放新的
      cm->config_string_temp = config_string;   /* we'll use it again later. */
      free_feature_vector (feature_vector);
      c = pool_elt_at_index (cm->config_pool, p[0]);
    }
  else
    {
      u32 *d;

      //分配新的config结构
      pool_get (cm->config_pool, c);
      c->index = c - cm->config_pool;
      c->features = feature_vector;
      c->config_string_vector = config_string;

      /* Allocate copy of config string in heap.
         VLIB buffers will maintain pointers to heap as they read out
         configuration data. */
      c->config_string_heap_index
    = heap_alloc (cm->config_string_heap, vec_len (config_string) + 1,
              c->config_string_heap_handle);

      /* First element in heap points back to pool index. */
      d =
    vec_elt_at_index (cm->config_string_heap,
              c->config_string_heap_index);
      //注意这里,config第一个4字节保存的是config索引号,之后才是slot号-私有config-slot号-私有config ......
      d[0] = c->index;
      clib_memcpy (d + 1, config_string, vec_bytes (config_string));
      hash_set_mem (cm->config_string_hash, config_string, c->index);

      c->reference_count = 0;   /* will be incremented by caller. */
    }

  return c;
}

现在各个feature node已经连接好了,连接信息也保存到了config中,接下来就是在业务node中使用了。
在需要开始使用feature机制的业务node中调用如下函数即可,注意该业务node必须是arc中的起始node

static_always_inline void
vnet_feature_arc_start (u8 arc, u32 sw_if_index, u32 * next0,
            vlib_buffer_t * b0)
{
  vnet_feature_arc_start_with_data (arc, sw_if_index, next0, b0, 0);
}

此函数会将next0修改为下一跳feature。feature的顺序在上文中已经确定

获取下一跳feature的逻辑很简单,在函数:


always_inline void *
vnet_get_config_data (vnet_config_main_t * cm,
              u32 * config_index, u32 * next_index, u32 n_data_bytes)
{
  u32 i, n, *d;

  //vlib_buffer_t->current_config_index用来记录执行到了哪个feature了,注意最初值为1。
  i = *config_index;

  d = heap_elt_at_index (cm->config_string_heap, i);

  n = round_pow2 (n_data_bytes, sizeof (d[0])) / sizeof (d[0]);

  /* Last 32 bits are next index. */
  //本feature下一跳的slot号
  *next_index = d[n];

  /* Advance config index to next config. */
  //记录下一跳feature的config索引
  *config_index = (i + n + 1);

  /* Return config data to user for this feature. */
  return (void *) d;
}

你可能感兴趣的:(VPP)