思科VPP源码分析(内存管理)

思科今年开源的vpp项目,在intel开源的dpdk之上,构建的数据包处理框架。
dpdk组件已经成功榨干硬件IO性能,剩下的瓶颈落在业务处理部分,其中最关键的又在内存访问优化上。
内存优化一句话概括:提高CPU L1,L2,L3 cache命中率。这里将分析vpp内存管理部分源码。
  • vec变长数组(vec_bootstrap.h)

    思科VPP源码分析(内存管理)_第1张图片
    len是数组元素个数,不是字节长度。每个数组元素都看作是等大小。
    自定义头部后接vec 组合使用。组合vec将引申出其他内存管理结构。

    _vec_find(v)
    v指向数据部分,宏返回vec头部地址
    _vec_round_size(s)
    s按sizeof (uword)大小,向上对齐
    vec_header_bytes (uword header_bytes)
    自定义头部+vec 组合这种模型下,header_bytes代表自定义头部大小。函数返回自定义头部+vec总长度,按sizeof (vec_header_t)向上对齐。
    vec_header (void *v, uword header_bytes)
    自定义头部+vec 组合,按sizeof (vec_header_t)向上对齐这种模型下,v指向数据部分地址,header_bytes代表自定义头部大小,返回自定义头部地址。
    vec_header_end (void *v, uword header_bytes)
    自定义头部+vec 组合,按sizeof (vec_header_t)向上对齐这种模型下,v指向自定义头部地址,header_bytes代表自定义头部大小,返回数据部分地址。
    vec_aligned_header (void *v, uword header_bytes, uword align)
    自定义头部+vec 组合,按align向上对齐这种模型下,v指向数据部分地址,header_bytes代表自定义头部大小,返回自定义头部地址。
    vec_aligned_header_end (void *v, uword header_bytes, uword align)
    自定义头部+vec 组合,按align向上对齐这种模型下,v指向自定义头部地址,header_bytes代表自定义头部大小,返回数据部分地址。
    _vec_len(v)
    v指向数据部分,返回vec头部的vec_header_t->len
    vec_len(v)
    v指向数据部分,v等于null时返回0,否则返回vec头部的vec_header_t->len
    vec_reset_length(v)
    v指向数据部分,vec头部的vec_header_t->len置0
    vec_bytes(v)
    v指向数据部分,返回数据部分总字节大小
    vec_capacity(v,b)
    这里写图片描述
    v指向data起始地址,b代表user_header大小,返回该mheap_elt_t字节大小,即vec的最大可占用内存。博主觉得该函数放在这里破坏了该头件的独立性。
    vec_max_len(v)
    类似vec_capacity(v,b)内存布局,v指向data起始地址,返回该vec可容纳最大数据块数目。
    vec_end(v)
    v指向data起始地址,返回vec数据部分末尾的下一个字节。
    vec_is_member(v,e)
    v指向data起始地址,返回e是否在该vec地址范围内。
    vec_elt_at_index(v,i)
    v指向data起始地址,返回第i个数据块的地址
    vec_elt(v,i)
    v指向data起始地址,返回第i个数据块的内容
    vec_foreach(var,vec)
    vec_foreach_backwards(var,vec)
    vec_foreach_index(var,v)
    迭代宏

  • mheap(mheap_bootstrap.h, mheap.c)

mheap整体视图
mheap整体视图
注意每个elt大小不一定相等。这里的vec_header_t把后面数据看成一个字节一个字节的元素,因此vec->len实际是整个数据部分字节长度。

mheap_elt_t视图
思科VPP源码分析(内存管理)_第2张图片
基本函数操作在mheap_bootstrap.h中
该头文件基本函数,结合上文内容很容易理解,这里不再详细叙述。

mheap.c中会对上图基本结构更近一步索引管理,也是mheap的核心部分。
思科VPP源码分析(内存管理)_第3张图片
mheap_maybe_lock (void *v)
mheap_maybe_unlock (void *v)
自旋锁加锁解锁函数,如果是持有锁的本CPU再次进入,可以无条件获取锁。

mheap_get_aligned (void v, uword n_user_data_bytes, uword align, uword align_offset, uword offset_return)
mheap内存分配接口函数


void *
mheap_get_aligned (void *v,
           uword n_user_data_bytes,
           uword align, uword align_offset, uword * offset_return)
{
  mheap_t *h;
  uword offset;
  u64 cpu_times[2];

  cpu_times[0] = clib_cpu_time_now ();

  //align至少是4字节大小,并且是2的幂
  align = clib_max (align, STRUCT_SIZE_OF (mheap_elt_t, user_data[0]));
  align = max_pow2 (align);

  /* Correct align offset to be smaller than alignment. */
  align_offset &= (align - 1);

  /* Align offset must be multiple of minimum object size. */
  if (align_offset % STRUCT_SIZE_OF (mheap_elt_t, user_data[0]) != 0)
    {
      *offset_return = MHEAP_GROUNDED;
      return v;
    }

  /* Round requested size. */
  //各种对齐,确保mheap_elt_t头部和数据部分都是STRUCT_SIZE_OF (mheap_elt_t, user_data[0]),之后再用专门章节详细分析数据结构对齐背后的作者设计目的
  n_user_data_bytes = clib_max (n_user_data_bytes, MHEAP_MIN_USER_DATA_BYTES);
  n_user_data_bytes =
    round_pow2 (n_user_data_bytes,
        STRUCT_SIZE_OF (mheap_elt_t, user_data[0]));

  if (!v)
    v = mheap_alloc (0, 64 << 20);//分配完整的一个mheap结构

  mheap_maybe_lock (v);

  h = mheap_header (v);

  if (h->flags & MHEAP_FLAG_VALIDATE)
    mheap_validate (v);//遍历mheap的空闲块链表,验证是否正确链接。

  /* First search free lists for object. */
  //从空闲块链表中获取数据块
  offset =
    mheap_get_search_free_list (v, &n_user_data_bytes, align, align_offset);

  h = mheap_header (v);

  /* If that fails allocate object at end of heap by extending vector. */
  if (offset == MHEAP_GROUNDED && _vec_len (v) < h->max_size)
    {
     //如果现有空闲块没有满足要求的块,则从mheap中新分配块,注意h->max_size代表该mheap最大内存量,_vec_len (v)代表目前使用量
      v =
    mheap_get_extend_vector (v, n_user_data_bytes, align, align_offset,
                 &offset);
      //mheap_get_extend_vector()并不会导致mheap重新分配,博主认为下面重新计算h毫无必要
      h = mheap_header (v);
      //如果扩充成功则统计值加1
      h->stats.n_vector_expands += offset != MHEAP_GROUNDED;
    }

  *offset_return = offset;
  if (offset != MHEAP_GROUNDED)
    {
      h->n_elts += 1;

      if (h->flags & MHEAP_FLAG_TRACE)
    {
      /* Recursion block for case when we are traceing main clib heap. */
      h->flags &= ~MHEAP_FLAG_TRACE;

      mheap_get_trace (v, offset, n_user_data_bytes);

      h->flags |= MHEAP_FLAG_TRACE;
    }
    }

  if (h->flags & MHEAP_FLAG_VALIDATE)
    mheap_validate (v);

  mheap_maybe_unlock (v);

  cpu_times[1] = clib_cpu_time_now ();
  h->stats.n_clocks_get += cpu_times[1] - cpu_times[0];
  h->stats.n_gets += 1;

  return v;
}

void *
mheap_alloc (void *memory, uword size)
{
  uword flags = 0;

  if (memory != 0)
    flags |= MHEAP_FLAG_DISABLE_VM;

//这里指的是利用cpu的SIMD向量指令加快缓存块的cache查找,之后会详细介绍
#ifdef CLIB_HAVE_VEC128
  flags |= MHEAP_FLAG_SMALL_OBJECT_CACHE;
#endif

  return mheap_alloc_with_flags (memory, size, flags);
}

void *
mheap_alloc_with_flags (void *memory, uword memory_size, uword flags)
{
  mheap_t *h;
  void *v;
  uword size;

  if (!mheap_page_size)
    mheap_page_size = clib_mem_get_page_size ();

  if (!memory)
    {
      /* No memory given, try to VM allocate some. */
      //通常用的是UNIX模式,该分配函数将mmap()匿名内存使用
      memory = clib_mem_vm_alloc (memory_size);
      if (!memory)
    return 0;

      /* No memory region implies we have virtual memory. */
      flags &= ~MHEAP_FLAG_DISABLE_VM;
    }

  /* Make sure that given memory is page aligned. */
  {
    uword am, av, ah;

    //把memory向上对mheap_page_size 大小对齐
    am = pointer_to_uword (memory);
    av = mheap_page_round (am);
    //计算对齐后的mheap头部地址
    v = uword_to_pointer (av, void *);
    h = mheap_header (v);
    ah = pointer_to_uword (h);
    //mheap头部地址小于memory起始地址,则增加一个mheap_page_size。这样mheap头部地址既在mmap()分配的内存范围中,也满足对齐要求。
    while (ah < am)
      ah += mheap_page_size;

    h = uword_to_pointer (ah, void *);
    v = mheap_vector (h);

    if (PREDICT_FALSE (memory + memory_size < v))
      {
    /*
     * This will happen when the requested memory_size is too
     * small to cope with the heap header and/or memory alignment.
     */
    clib_mem_vm_free (memory, memory_size);
    return 0;
      }
    //size代表mheap数据部分大小
    size = memory + memory_size - v;
  }

  /* VM map header so we can use memory. */
  if (!(flags & MHEAP_FLAG_DISABLE_VM))
    clib_mem_vm_map (h, sizeof (h[0]));

  /* Zero vector header: both heap header and vector length. */
  memset (h, 0, sizeof (h[0]));
  _vec_len (v) = 0;

  h->vm_alloc_offset_from_header = (void *) h - memory;
  h->vm_alloc_size = memory_size;

  h->max_size = size;
  h->owner_cpu = ~0;

  /* Set flags based on those given less builtin-flags. */
  h->flags |= (flags & ~MHEAP_FLAG_TRACE);

  /* Unmap remainder of heap until we will be ready to use it. */
  //虽然不解除映射也不会影响性能。但是这样好处是一旦访问了未分配的内存会导致段错误,提示开发人员编码错误
  if (!(h->flags & MHEAP_FLAG_DISABLE_VM))
    mheap_vm (v, MHEAP_VM_UNMAP | MHEAP_VM_ROUND_UP,
          (clib_address_t) v, h->max_size);

  /* Initialize free list heads to empty. */
  //MHEAP_GROUNDED代表该bin下没有空闲数据块,值为~0。所以这里用0xFF初始化。
  memset (h->first_free_elt_uoffset_by_bin, 0xFF,
      sizeof (h->first_free_elt_uoffset_by_bin));

  return v;
}

/* Search free lists for object with given size and alignment. */
static uword
mheap_get_search_free_list (void *v,
                uword * n_user_bytes_arg,
                uword align, uword align_offset)
{
  mheap_t *h = mheap_header (v);
  uword bin, n_user_bytes, i, bi;

  n_user_bytes = *n_user_bytes_arg;
  //计算bin值,用来索引对应大小空闲块链表
  bin = user_data_size_to_bin_index (n_user_bytes);

  //如果请求的是满足条件的块,则从一个额外的cache中获取,避免了搜索空闲块链表开销,还可以利用CPU的SIMD向量指令来加速匹配。
  if (MHEAP_HAVE_SMALL_OBJECT_CACHE
      && (h->flags & MHEAP_FLAG_SMALL_OBJECT_CACHE)
      && bin < 255
      && align == STRUCT_SIZE_OF (mheap_elt_t, user_data[0])
      && align_offset == 0)
    {
      //cache中寻找数据块,之后会详细分析
      uword r = mheap_get_small_object (h, bin);
      h->stats.n_small_object_cache_attempts += 1;
      if (r != MHEAP_GROUNDED)
    {
      h->stats.n_small_object_cache_hits += 1;
      return r;
    }
    }

  //h->non_empty_free_elt_heads是一个位图,记录了对应bin链表是否为空
  for (i = bin / BITS (uword); i < ARRAY_LEN (h->non_empty_free_elt_heads);
       i++)
    {
      uword non_empty_bin_mask = h->non_empty_free_elt_heads[i];

      /* No need to search smaller bins. */
      //把比bin小的位置的位图略掉
      if (i == bin / BITS (uword))
    non_empty_bin_mask &= ~pow2_mask (bin % BITS (uword));

      /* Search each occupied free bin which is large enough. */
      //foreach_set_bit()从右往左遍历每个bit,为1的bit调用mheap_get_search_free_bin()
      //foreach_set_bit()中first_set (uword x)用来计算从右算第一个为1的bit代表的数
      foreach_set_bit (bi, non_empty_bin_mask, (
                         {
                         uword r =
                         mheap_get_search_free_bin (v,
                                        bi
                                        +
                                        i
                                        *
                                        BITS
                                        (uword),
                                        n_user_bytes_arg,
                                        align,
                                        align_offset);
                         if (r !=
                             MHEAP_GROUNDED) return
                         r;}
               ));
    }

  return MHEAP_GROUNDED;
}
/*如果每次都是计算bin值再从链表中找空闲块就太麻烦了,对满足特定条件块,也应该是vpp使用频率最多的那种类型的块做了个cache,只需要计算bin值就能直接得到可用空闲块。该函数就是干这事。*/
always_inline uword
mheap_get_small_object (mheap_t * h, uword bin)
{
/*cache中c->bins.as_u8数组每个元素记录了(bin+1),为0代表该位置没有空闲块。c->offsets记录对应bin的空闲块。
  mheap_small_object_cache_t *c = &h->small_object_cache;
  //查找c->bins.as_u8数组中,所有值为(bin+1)的索引组成的位图
  uword mask = mheap_small_object_cache_mask (c, bin + 1);
  uword offset = MHEAP_GROUNDED;

  //如果位图不为0,说明有空闲块,查找位图最左边那个为1bit的索引,返 回对应的c->offsets值,即可用空闲块。
  if (mask)
    {
      uword i = min_log2 (mask);
      uword o = c->offsets[i];
      ASSERT (o != MHEAP_GROUNDED);
      c->bins.as_u8[i] = 0;
      offset = o;
    }

  return offset;
}

always_inline uword
mheap_small_object_cache_mask (mheap_small_object_cache_t * c, uword bin)
{
  uword mask;

/* $$$$ ELIOT FIXME: add Altivec version of this routine */
//本函数依赖于CPU支持向量指令。
#if !defined (CLIB_HAVE_VEC128) || defined (__ALTIVEC__)
  mask = 0;
#else
  //返回一个由16字节组成的向量,每个字节的值都是bin
  u8x16 b = u8x16_splat (bin);

  ASSERT (bin < 256);

/*u8x16_is_equal()比较两个128bit位向量,每个字节进行对比,如果相等,返回字节为1,一共返回16个字节,组成一个返回值128bit向量。u8x16_compare_byte_mask()把返回的128bit向量转化成位图,共16个bit位图*/
#define _(i) ((uword) u8x16_compare_byte_mask (u8x16_is_equal (b, c->bins.as_u8x16[i])) << (uword) ((i)*16))
  mask = _(0) | _(1);
  if (BITS (uword) > 32)
    mask |= _(2) | _(3);
#undef _

#endif
//32位系统返回的是32bit位图,64位系统返回64bit位图
  return mask;
}

/*该函数搜索bin对应的空闲块链表。找到一个大小满足要求的空闲块是很容易的,本函数额外大量代码花在了满足空闲块的对齐要求上。align:首地址相对于heap偏移对齐,align_offset:首地址对齐后,再向左做个偏移。
分配内存时从对应的slot中查找,值得注意的是查找算法为了满足参数中对齐要求,很有可能从空闲块中间部分分配内存,这样首尾部分空闲块重新链入新的slot。一切的一切都是为了数据对齐。如果分配的内存是一个带头部的数据结构,例如vec+data类型。那么分配内存时需要把头部大小作为align_offset参数,使数据部分满足起始地址align对齐。*/
思科VPP源码分析(内存管理)_第4张图片

static uword
mheap_get_search_free_bin (void *v,
               uword bin,
               uword * n_user_data_bytes_arg,
               uword align, uword align_offset)
{
  mheap_t *h = mheap_header (v);
  mheap_elt_t *e;

  /* Free object is at offset f0 ... f1;
     Allocatted object is at offset o0 ... o1. */
  //o0,f0是用于首部,f0,f1用于尾部,lo_free_usize切分后首部空间,hi_free_usize切分后尾部空间
  word o0, o1, f0, f1, search_n_user_data_bytes;
  word lo_free_usize, hi_free_usize;

  ASSERT (h->first_free_elt_uoffset_by_bin[bin] != MHEAP_GROUNDED);
  e = mheap_elt_at_uoffset (v, h->first_free_elt_uoffset_by_bin[bin]);

  search_n_user_data_bytes = *n_user_data_bytes_arg;

  /* Silence compiler warning. */
  o0 = o1 = f0 = f1 = 0;

  h->stats.free_list.n_search_attempts += 1;

  /* Find an object that is large enough with correct alignment at given alignment offset. */
  while (1)
    {
      uword this_object_n_user_data_bytes = mheap_elt_data_bytes (e);

      ASSERT (e->is_free);
      if (bin < MHEAP_N_SMALL_OBJECT_BINS)
    ASSERT (this_object_n_user_data_bytes >= search_n_user_data_bytes);

      h->stats.free_list.n_objects_searched += 1;

      if (this_object_n_user_data_bytes < search_n_user_data_bytes)
    goto next;

      /* Bounds of free object: from f0 to f1. */
      //f0指向原始块首部地址偏移,f1指向原始块尾部地址偏移
      f0 = ((void *) e->user_data - v);
      f1 = f0 + this_object_n_user_data_bytes;

      /* Place candidate object at end of free block and align as requested. */
      //从尾部往左分配目标块,o0指向首部偏移并且满足对齐要求
      o0 = ((f1 - search_n_user_data_bytes) & ~(align - 1)) - align_offset;
      //o0比f0还小了,右偏移一个align
      while (o0 < f0)
    o0 += align;

      /* Make sure that first free fragment is either empty or
         large enough to be valid. */
      //确保切分后首部空闲块至少有MHEAP_ELT_OVERHEAD_BYTES大小,这是要给切去的块做头部的
      while (1)
    {
      lo_free_usize = o0 != f0 ? o0 - f0 - MHEAP_ELT_OVERHEAD_BYTES : 0;
      if (o0 <= f0 || lo_free_usize >= (word) MHEAP_MIN_USER_DATA_BYTES)
        break;
      //越偏移lo_free_usize越小,什么鬼,博主强烈认为这是bug,应该是+=
      o0 -= align;
    }

      //o0~o1之间就是我们要找的内存了,大小,对齐性都满足
      o1 = o0 + search_n_user_data_bytes;

      /* Does it fit? */
      if (o0 >= f0 && o1 <= f1)
    goto found;

    next:
      /* Reached end of free list without finding large enough object. */
      if (e->free_elt.next_uoffset == MHEAP_GROUNDED)
    return MHEAP_GROUNDED;

      /* Otherwise keep searching for large enough object. */
      e = mheap_elt_at_uoffset (v, e->free_elt.next_uoffset);
    }

found:
  /* Free fragment at end. */
  hi_free_usize = f1 != o1 ? f1 - o1 - MHEAP_ELT_OVERHEAD_BYTES : 0;

  /* If fragment at end is too small to be a new object,
     give user's object a bit more space than requested. */
     //从中间切开得到我们要的内存,尾部如果太小,就不单独做成空闲块了,直接给我们用。
  if (hi_free_usize < (word) MHEAP_MIN_USER_DATA_BYTES)
    {
      search_n_user_data_bytes += f1 - o1;
      o1 = f1;
      hi_free_usize = 0;
    }

  /* Need to make sure that relevant memory areas are mapped. */
  //切去的内存mmap下
  if (!(h->flags & MHEAP_FLAG_DISABLE_VM))
    {
      mheap_elt_t *f0_elt = mheap_elt_at_uoffset (v, f0);
      mheap_elt_t *f1_elt = mheap_elt_at_uoffset (v, f1);
      mheap_elt_t *o0_elt = mheap_elt_at_uoffset (v, o0);
      mheap_elt_t *o1_elt = mheap_elt_at_uoffset (v, o1);

      uword f0_page_start, f0_page_end;
      uword o0_page_start, o0_page_end;

      /* Free elt is mapped.  Addresses after that may not be mapped. */
      f0_page_start = mheap_page_round (pointer_to_uword (f0_elt->user_data));
      f0_page_end = mheap_page_truncate (pointer_to_uword (f1_elt));

      o0_page_start = mheap_page_truncate (pointer_to_uword (o0_elt));
      o0_page_end = mheap_page_round (pointer_to_uword (o1_elt->user_data));

      if (o0_page_start < f0_page_start)
    o0_page_start = f0_page_start;
      if (o0_page_end > f0_page_end)
    o0_page_end = f0_page_end;

      if (o0_page_end > o0_page_start)
    clib_mem_vm_map (uword_to_pointer (o0_page_start, void *),
             o0_page_end - o0_page_start);
    }

  /* Remove free object from free list. */
  remove_free_elt (v, e, bin);

  /* Free fragment at begining. */
  //切分后首部块重新链入bin表
  if (lo_free_usize > 0)
    {
      ASSERT (lo_free_usize >= (word) MHEAP_MIN_USER_DATA_BYTES);
      mheap_elt_set_size (v, f0, lo_free_usize, /* is_free */ 1);
      new_free_elt (v, f0, lo_free_usize);
    }

  mheap_elt_set_size (v, o0, search_n_user_data_bytes, /* is_free */ 0);

  //切分后尾部块重新链入bin表
  if (hi_free_usize > 0)
    {
      uword uo = o1 + MHEAP_ELT_OVERHEAD_BYTES;
      mheap_elt_set_size (v, uo, hi_free_usize, /* is_free */ 1);
      new_free_elt (v, uo, hi_free_usize);
    }

  /* Return actual size of block. */
  //分配的elt的数据部分大小
  *n_user_data_bytes_arg = search_n_user_data_bytes;

  h->stats.free_list.n_objects_found += 1;

  //返回分配的elt的数据部分偏移值
  return o0;
}

user_data_size_to_bin_index (uword n_user_data_bytes)
空闲mheap_elt_t按照数据部分大小分类链接到不同slot中。该函数计算bin值。

/* Find bin for objects with size at least n_user_data_bytes. */
always_inline uword
user_data_size_to_bin_index (uword n_user_data_bytes)
{
  uword n_user_data_words;
  word small_bin, large_bin;

  /* User size must be at least big enough to hold free elt. */
  //n_user_data_bytes至少要能包含mheap_elt_t头部
  n_user_data_bytes = clib_max (n_user_data_bytes, MHEAP_MIN_USER_DATA_BYTES);

  /* Round to words. */
  n_user_data_words =
    (round_pow2 (n_user_data_bytes, MHEAP_USER_DATA_WORD_BYTES) /
     MHEAP_USER_DATA_WORD_BYTES);

  ASSERT (n_user_data_words > 0);
  //除去头部的纯数据部分长度,换算成占用word个数,即为bin值
  small_bin =
    n_user_data_words -
    (MHEAP_MIN_USER_DATA_BYTES / MHEAP_USER_DATA_WORD_BYTES);
  ASSERT (small_bin >= 0);

  large_bin =
    MHEAP_N_SMALL_OBJECT_BINS + max_log2 (n_user_data_bytes) -
    MHEAP_LOG2_N_SMALL_OBJECT_BINS;
  //1 ~ MHEAP_N_SMALL_OBJECT_BINS每个值对应单独bin
  //>=  MHEAP_N_SMALL_OBJECT_BINS多个值映射到一个bin中。
  //可见,分配内存越小,越能精准快速定位到可选空闲块。
  return small_bin < MHEAP_N_SMALL_OBJECT_BINS ? small_bin : large_bin;
}
  • vector
    实际使用的缓存一般是如下结构:
    这里写图片描述
    user_header指具体数据结构头部,比如:mhash_t,pool_header_t等等

你可能感兴趣的:(VPP)