统计学习2

中心极限定理:

中心极限定理,是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。最早的中心极限定理是讨论重点,伯努利试验中,事件A出现的次数渐近于正态分布的问题。

 

样本均值的抽象分布:

样本均值的抽样分布是所有的样本均值形成的分布,即μ的概率分布。样本均值的抽样分布在形状上却是对称的。随着样本量n的增大,不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值μ,方差为总体方差的1/n。这就是中心极限定理(central limit theorem)。

 

均值标准误差:

统计学习2_第1张图片

置信区间:

               95%置信区间,意味着如果你用同样的步骤,去选样本,计算置信区间,那么100次这样的独立过程,有95%的概率你计算出来的区间会包含真实参数值,即大概会有95个置信区间会包含真值。而对于某一次计算得到的某一个置信区间,其包含真值的概率,我们无法讨论。

 

 

伯努利分布:

               伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0

你可能感兴趣的:(统计学习,中心极限定理)