- 零配置初始化流程就一直过不去_ZYNQ UltraScale+ MPSoc FPGA自学笔记-启动加载配置...
weixin_40009026
零配置初始化流程就一直过不去
前言听说最近秋天的第一杯奶茶挺火的,我得赶紧奋发图强写点东西,好赚点赏钱给妹子买奶茶,各位大佬出手大方点,我怕秋天过去了妹子还没喝上奶茶!言归正传,ZYNQUltraScale+MPSoc的配置过程还是挺复杂的,决定写一篇文章来讲一讲,当然我也是初学,如有错讹请轻轻打左脸。一、配置过程Zynq®UltraScale+™MPSoC同时有PS端和PL端,PS又有两种不同的多核处理器可以运行底层代码或者
- Linux git
Reicher
Linuxlinuxgitelasticsearch
参考Linux上传文件至GitHubLinux学习系列(二十):在Linux系统中使用Git上传代码到GitHub仓库Linux下使用git克隆github项目及文件上传Linux/Ubuntu下使用git从Github拉取项目文件、提交修改后文件的完整流程演示[Git]-Linux下的git操作从零开始一个git操作实例,图文并茂1、安装并绑定用户信息//安装sudoaptinstallgit/
- zynq usb dwc3中断事件异常
charschu
linux-usb驱动开发
最近在调试zynq的usb,发现一个问题,给pcbulk传输吐log,传输速率1MB左右速率发包,发现会传输终止,调用epsend接口会失败原因在于没有收到传输完成事件,收到连续2次notready事件,这种情况usbbusy标志没有清除,结果send会进入updatethansfer分支指令,但是此时usbhardware已经释放了sourceindex,会挂死掉这里,这样说明硬件已经发送了完成
- PetaLinux开发流程
非鱼知乐
1.Createanewprojectpetalinux-create-tproject--templatezynq-n$(project_name)orpetalinux-create-tproject-s$(bsp_file)2.Importhardwareinformationpetalinux-config--get-hw-description=$(path_to_hdf)The.hdf
- ZYNQ MPSOC FPGA 仿真 教程
行者..................
fpga开发FPGA
1.**FPGA与MPSOC**:FPGA(FieldProgrammableGateArray)是一种可以通过编程配置的集成电路,适用于各种应用和功能。MPSOC(Multi-ProcessorSystemonChip)是集成了多个处理器(通常是微处理器)的系统芯片,用于处理复杂的应用,如图像处理、网络通信等。2.**仿真与分析**:-**仿真波形图**:在进行硬件设计时,仿真波形图是用来验证电
- zybo上运行linux,Zybo开发板linux作业系统移植
周行文
zybo上运行linux
文章主要介紹zyboboard上linux作业系统移植过程。分别介绍了开发环境搭建、U-boot编译、linux内核编译、busybox制作等流程及注意事项。文章使用的开发板是zynq7000系列的zyboboard。Vivado版本是2015.1.主机系统是Debian9.1.开发环境搭建工欲善其事必先利其器,做开发前搭建好编译环境是重要的一步,这些步骤大体上都相同,然而对于不同的系统平台、硬件
- ZYNQ LWIP (RAW API) UDP函数学习
LEEE@FPGA
ZYNQudp学习单片机
1RAWAPI接口RAWAPI是基于回调函数实现的API接口,它是很底层的API接口,这需要开发者对LwIP有较深的了解才能很好使用它,RAWAPI的核心就是对控制块的处理,因为对于报文数据的处理、注册回调函数等都是需要开发者自己去实现,都是比较麻烦的,但是有一个优点,那就是处理数据效率高。2RAWAPI的UDP函数说明udp_new()–新建控制块在使用UDP协议进行通信之前,必须创建一个UDP
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 深度学习系列(1) TensorFlow---Tensorflow学习路线
CoderIsArt
Python机器学习与深度学习深度学习tensorflow学习
学习TensorFlow是掌握深度学习和机器学习的关键一步。以下是一个详细的TensorFlow学习路线图,涵盖从基础到高级的知识点和实践,帮助你逐步掌握TensorFlow并应用于实际问题中。1.基础知识1.1了解TensorFlow概念:什么是TensorFlow?它的用途和应用场景。安装:如何在本地机器上安装TensorFlow,使用pip安装基本库。文档和教程:熟悉TensorFlow的官
- Docker学习系列(七):使用Kubernetes Operators进行应用的自动化运维管理
黄宝良
Docker运维docker学习
使用KubernetesOperators进行应用的自动化运维管理KubernetesOperators是扩展Kubernetes功能的强大工具,可以自动化复杂的应用运维任务。本篇文章将详细介绍KubernetesOperators的概念、工作原理,并通过实际案例演示如何创建和使用Operators进行应用的自动化运维管理。一、什么是KubernetesOperators?KubernetesOp
- 【ZYNQ MPSoC开发】双核数据采集系统AXI DMA传输,LWIP TCP发送的调试记录
辣个蓝人QEX
FPGA/嵌入式网络开发ZYNQMPSoCtcp/ip网络嵌入式硬件fpga
问题背景项目需求是使用ZU3EG实现一个汇集板的功能。具体而言,PL端接收来自前级的来的带有时间戳的ADC数据,先在PL端进行数据对齐,再通过AXIDMA传输到PS端,由PS端通过lwip实现TCP客户端。在成功连接到PC后,通过AXIGPIO给PL端一个信号,开始产生模拟数据(还未上前级,只是模拟),并开始AXIDMA简单传输,每次传输完成后,如果lwip的发送buffer足够,则立刻把数据发出
- C# WPF入门学习主线篇(十六)—— Grid布局容器
Ice bear433
C#WPFc#wpf学习
C#WPF入门学习主线篇(十六)——Grid布局容器欢迎来到C#WPF入门学习系列的第十六篇。在前几篇文章中,我们已经探讨了Canvas、StackPanel、WrapPanel和DockPanel布局容器及其使用方法。本篇博客将介绍另一种功能强大且灵活的布局容器——Grid。通过本文,您将学习如何使用Grid来创建复杂且灵活的用户界面布局,并了解Grid的常见属性和应用场景。什么是Grid布局容
- 【ZYNQ MPSoC开发】lwIP TCP发送用于数据缓存的软件FIFO设计
辣个蓝人QEX
ZYNQMPSoCFPGA/嵌入式网络开发tcp/ip缓存网络
设计背景任务是在ZYNQ的PS上使用裸机运行lwIP协议栈使用TCP把PL端通过AXIDMA传来的将近100K采样率的ADC数据发送出去,但由于数据带宽很大,有853.3mbps,所以在每一次AXIDMA简单传输结束后,lwIP未必有足够的发送buffer立即把数据发送走,如果是发送完再进行下一次简单传输的思路,则会很大地限制了整个系统的带宽,一个简单的思路是每次传输完成后判断发送buffer是否
- 从0开始的OpenGL学习(三十六)-Debugging
闪电的蓝熊猫
Debug从0开始的OpenGL学习系列目录说到编程,写代码,有一个我们永远绕不过去的话题就是Debug。BUG这种东西真是对它恨之入骨啊,不经意间的一个BUG就可以毁掉你的夜晚,甚至毁掉你的周末。每次听到有BUG的时候,心里总是会感觉不爽,这种不爽,既包含了对自己无能的愤怒,也包含了对测试人员胡乱操作的愤怒。但是,不管怎么说,对BUG我们只能控制,无法彻底消灭,在编程这条路上,我们正和BUG同行
- 基于multisim的fm调制解调_基于SDR的FM调制与解调器的实现
weixin_39876514
张博,李少阳,刘宇本文引用地址:http://www.eepw.com.cn/article/201907/402132.htm(西安邮电大学电子工程学院,陕西省西安市710121)摘要:提出了一种基于SDR的FM调制解调器的实现方案,此方案采用ZYNQ平台和AD9361射频收发芯片搭建。首先介绍ZYNQ+AD9361的SDR硬件平台的设计,其次对FM调制解调的原理分析并结合MATLAB进行算法仿
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- HFM深入技术学习系列之四--调用API生成日记账
Flora_Fang
HFMHFMjavaAPISDK
概述本文描述使用HFM提供的SDK自动生成日记账介绍分为三个步骤1获得进入HFM的session2获得JournalOM3使用JournalOM保存日记账用到的包fmcommon.jarfm-web-objectmodel.jarhssutil.jar代码示例获取JournalOMISecurityManagertpMNG=HSSUtilManager.getSecurityManager();S
- HFM深入技术学习系列之五--FDMEE钻取EBS
Flora_Fang
HFMFDMEEEBS钻取
概述本文描述如何设置FDMEE钻取回EBS的方法。注意:FDMEE是通过OpenInterface抽取EBS数据的,不是直接与EBS连接设置过程1进入FDMEE2设置->源适配器->钻取URL3添加钻取URL,录入名称,请求方法等4设置->导入格式5选择要设置的导入格式,详细信息栏目中的钻取URL选项中选择设置好的钻取URL钻取EBS的URLURL格式http://myserver.com:801
- HFM深入技术学习系列之二--规则
Flora_Fang
HFMHFM
学习的路线学习如何写规则,从技术的角度看,从以下几点入手:0HFM合并报表的基本业务功能1规则的入口,即HFM是从哪里调用我们写的规则。2规则的基本语法,规则是用VBSCRIPT写的,这里所说的基本语法不是指的VBSCRIPT的语法,其实更多地是说规则里HS这个OBJECT和相关函数如何使用。3规则的深入应用HFM合并报表的基本业务功能HFM是一个专业性很强的软件,技术人员如果对其涉及到的财务-合
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 深度学习系列70:模型部署torchserve
IE06
深度学习系列深度学习人工智能
1.流程说明ts文件夹下,从launcher.py进入,执行jar文件。入口为model_server.py的start()函数。内容包含:读取args,创建pid文件找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket
- MySQL 系统学习系列 - SQL 语句 DQL 语句的使用(2)《MySQL系列篇-04》
小孔_H
MySQLmysql学习sql
SQL语句DQL聚合函数1.聚合聚合查询:指的是一个函数[聚合函数对一组执行计算并返回单一的值]聚合的目的:为了快速得到统计数据聚合函数说明count(*)表示计总行数,括号中写*与列名,结果相同max(列)表示求此列最大值min(列)表示求此列最小值sum(列)求此列的和avg(列)求此列的平均值group_concat(列)按组进行来接数据▲【分组查询】#count函数-通常配合组合一起使用#
- MySQL 系统学习系列 - SQL 语句 DQL 语句的使用(1)《MySQL系列篇-03》
小孔_H
MySQLmysql学习sql
SQL语句DQL数据库表常见查询语句1.全部查询#查询全部[SELECT*FROM表名]SELECT*FROMstu;#查询stu表中的所有列#再SELECT语句后加上distinct语句,表示去重查询SELECTdistinct`name`FROMstu;#查询stu表中的所有name列(去重)2.条件查询#条件查询[SELECT*FROM表名FROMWHERE条件]#比较运算符SELECT*F
- MySQL 系统学习系列 - SQL 语句 DML 语句的使用《MySQL系列篇-02》
小孔_H
MySQLmysql学习sql
SQL语句DML数据库DML操作0.MySQL中大小写问题[tip]:1.数据库名与表名是严格区分大小写的(window不区分)2.表的别名是严格区分大小写的(如stuass)(window不区分)3.列名忽略大小写4.变量名也是严格区分大小写1.插入数据其中分别可以使用全列插入、缺省插入与批量插入三种方式#全列插入:INSERTINTO表名VALUES(v1,v2,v3,...)INSERTIN
- Linux学习系列之vim编辑器(一)
llibertyll
linux学习
vi编辑器的操作模式输入模式—aio等—>命令模式<—:键—末行模式从输入/末行模式切换到命令模式都是需要按ESC键注:a光标后输入,i光标前输入,o直接向下加一行输入,O向上加一行输入在vi编辑器中光标的移动(命令行模式下)键组合(命令)光标的移动$光标移动到当前行的结尾0(零)光标移动到当前行的开始GG光标移动到最后一行gg光标移动到第一行在命令行模式下删除与复制的操作键组合(命令)含义dd删
- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- Jmeter学习系列之七:并发线程组Concurrency Thread Group详解
艳Yansky
自动化测试Jmeter压力测试jmeter学习
一、ConcurrencyThreadGroup的介绍ConcurrencyThreadGroup提供了用于配置多个线程计划的简化方法该线程组目的是为了保持并发水平,意味着如果并发线程不够,则在运行线程中启动额外的线程和StandardThreadGroup不同,它不会预先创建所有线程,因此不会使用额外的内存对于上篇讲到的SteppingThreadGroup来说,ConcurrencyThrea
- Python学习系列 -认识面向对象三大特性、可见性和属性装饰器
需要休息的KK.
python学习javapycharm面试
系列文章目录第一章初始Python第二章认识Python变量、类型、运算符第三章认识条件分支、循环结构第四章认识Python的五种数据结构第五章认识Python函数、模块第六章认识面向对象三大特性文章目录系列文章目录前言一、类和对象1.定义类2.创建和使用类对象3.使用类对象中的方法4.初始化二、面向对象的三大特性1.封装2.继承3.多态三、属性可见性四、属性装饰器总结前言面向对象编程是一种非常流
- Flutter框架性泛学习系列之二、Flutter应用层(Application Layer)上-常用Widgets与简单动画
太书红叶
Flutter框架性学习flutter学习Dartwidget树
文章目录概述一、应用程序(Application):1、创建应用对象2、定义应用主页二、Widgets:1.基础的内置Widgets应用1.1TextWidget1.2RaisedButtonWidget1.3ImageWidget1.4IconWidget2.自定义Widgets的创建与应用2.1创建按钮组件2.2创建卡片组件2.3创建自定义列表项3.布局Widgets的应用3.1RowWidg
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/