最近看到的一个很好的C语言实现的线程池。这个线程池具有比较好的动态调整能力。
https://docs.oracle.com/cd/E19120-01/open.solaris/816-5137/ggedn/index.html
外部接口:
typedef struct thr_pool thr_pool_t;
thr_pool_t *thr_pool_create(uint_t min_threads, uint_t max_threads,
uint_t linger, pthread_attr_t *attr);
int thr_pool_queue(thr_pool_t *pool,
void *(*func)(void *), void *arg);
void thr_pool_wait(thr_pool_t *pool);
void thr_pool_destroy(thr_pool_t *pool);
线程池结构体struct thr_pool如下:
- 能够在运行时创建多个线程池,通过pool_forw和pool_back两个指针域构成一个双向循环链表,来将创建的线程池链接起来。
- pool_mutex、pool_busycv、pool_workcv、pool_waitcv。互斥锁和条件变量保证线程同步。
- pool_active指针域将当前活跃的任务通过单链表链接在一起,链表尾指向NULL,注意该链表是通过活跃线程的栈空间链接起来的。
- pool_head、pool_tail指向线程中任务队列的头和尾。任务队列节点结构struct job中包含指向下一个节点的指针、任务执行的用户函数以及参数。
- pool_attr为线程属性。
- pool_flags线程池状态。
- pool_linger为idle线程退出前存活的秒数。
- minimum、maximum、pool_nthreads分别为最小线程数,最大线程数以及当前活跃的线程数。
源代码:
由于之前的实现是在solaris上的,因此做了一点修改能在linux下使用。
thr_pool.h
/*
* Declarations for the clients of a thread pool.
*/
#include
typedef unsigned int uint_t;
/*
* The thr_pool_t type is opaque to the client.
* It is created by thr_pool_create() and must be passed
* unmodified to the remainder of the interfaces.
*/
typedef struct thr_pool thr_pool_t;
/*
* Create a thread pool.
* min_threads: the minimum number of threads kept in the pool,
* always available to perform work requests.
* max_threads: the maximum number of threads that can be
* in the pool, performing work requests.
* linger: the number of seconds excess idle worker threads
* (greater than min_threads) linger before exiting.
* attr: attributes of all worker threads (can be NULL);
* can be destroyed after calling thr_pool_create().
* On error, thr_pool_create() returns NULL with errno set to the error code.
*/
extern thr_pool_t *thr_pool_create(uint_t min_threads, uint_t max_threads,
uint_t linger, pthread_attr_t *attr);
/*
* Enqueue a work request to the thread pool job queue.
* If there are idle worker threads, awaken one to perform the job.
* Else if the maximum number of workers has not been reached,
* create a new worker thread to perform the job.
* Else just return after adding the job to the queue;
* an existing worker thread will perform the job when
* it finishes the job it is currently performing.
*
* The job is performed as if a new detached thread were created for it:
* pthread_create(NULL, attr, void *(*func)(void *), void *arg);
*
* On error, thr_pool_queue() returns -1 with errno set to the error code.
*/
extern int thr_pool_queue(thr_pool_t *pool,
void *(*func)(void *), void *arg);
/*
* Wait for all queued jobs to complete.
*/
extern void thr_pool_wait(thr_pool_t *pool);
/*
* Cancel all queued jobs and destroy the pool.
*/
extern void thr_pool_destroy(thr_pool_t *pool);
thr_pool.c
/*
* Thread pool implementation.
* See for interface declarations.
*/
#if !defined(_REENTRANT)
#define _REENTRANT
#endif
#include "thr_pool.h"
#include <stdlib.h>
#include <signal.h>
#include <errno.h>
typedef void (*pFun)(void *);
/*
* FIFO queued job
*/
typedef struct job job_t;
struct job {
job_t *job_next; /* linked list of jobs */
void *(*job_func)(void *); /* function to call */
void *job_arg; /* its argument */
};
/*
* List of active worker threads, linked through their stacks.
*/
typedef struct active active_t;
struct active {
active_t *active_next; /* linked list of threads */
pthread_t active_tid; /* active thread id */
};
/*
* The thread pool, opaque to the clients.
*/
struct thr_pool {
thr_pool_t *pool_forw; /* circular linked list */
thr_pool_t *pool_back; /* of all thread pools */
pthread_mutex_t pool_mutex; /* protects the pool data */
pthread_cond_t pool_busycv; /* synchronization in pool_queue */
pthread_cond_t pool_workcv; /* synchronization with workers */
pthread_cond_t pool_waitcv; /* synchronization in pool_wait() */
active_t *pool_active; /* list of threads performing work */
job_t *pool_head; /* head of FIFO job queue */
job_t *pool_tail; /* tail of FIFO job queue */
pthread_attr_t pool_attr; /* attributes of the workers */
int pool_flags; /* see below */
uint_t pool_linger; /* seconds before idle workers exit */
int pool_minimum; /* minimum number of worker threads */
int pool_maximum; /* maximum number of worker threads */
int pool_nthreads; /* current number of worker threads */
int pool_idle; /* number of idle workers */
};
/* pool_flags */
#define POOL_WAIT 0x01 /* waiting in thr_pool_wait() */
#define POOL_DESTROY 0x02 /* pool is being destroyed */
/* the list of all created and not yet destroyed thread pools */
static thr_pool_t *thr_pools = NULL;
/* protects thr_pools */
static pthread_mutex_t thr_pool_lock = PTHREAD_MUTEX_INITIALIZER;
/* set of all signals */
static sigset_t fillset;
static void *worker_thread(void *);
static int
create_worker(thr_pool_t *pool)
{
sigset_t oset;
int error;
pthread_t thread;
(void) pthread_sigmask(SIG_SETMASK, &fillset, &oset);
error = pthread_create(&thread, &pool->pool_attr, worker_thread, pool); //创建线程
(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
return (error);
}
/*
* Worker thread is terminating. Possible reasons:
* - excess idle thread is terminating because there is no work.
* - thread was cancelled (pool is being destroyed).
* - the job function called pthread_exit().
* In the last case, create another worker thread
* if necessary to keep the pool populated.
*/
static void
worker_cleanup(void *vpool)
{
thr_pool_t *pool=(thr_pool_t *)vpool;
--pool->pool_nthreads;
if (pool->pool_flags & POOL_DESTROY) {
if (pool->pool_nthreads == 0)
(void) pthread_cond_broadcast(&pool->pool_busycv);
} else if (pool->pool_head != NULL &&
pool->pool_nthreads < pool->pool_maximum &&
create_worker(pool) == 0) {
pool->pool_nthreads++;
}
(void) pthread_mutex_unlock(&pool->pool_mutex);
}
static void
notify_waiters(thr_pool_t *pool)
{
if (pool->pool_head == NULL && pool->pool_active == NULL) { //任务队列和活跃线程为空
pool->pool_flags &= ~POOL_WAIT; //清零等待状态
(void) pthread_cond_broadcast(&pool->pool_waitcv); //激活所有线程
}
}
/*
* Called by a worker thread on return from a job.
*/
static void
job_cleanup(void *vpool)
{
thr_pool_t *pool=(thr_pool_t *)vpool;
pthread_t my_tid = pthread_self();
active_t *activep;
active_t **activepp;
(void) pthread_mutex_lock(&pool->pool_mutex);
for (activepp = &pool->pool_active;
(activep = *activepp) != NULL;
activepp = &activep->active_next) {
if (activep->active_tid == my_tid) {
*activepp = activep->active_next;
break;
}
}
if (pool->pool_flags & POOL_WAIT)
notify_waiters(pool);
}
static void *
worker_thread(void *arg)
{
thr_pool_t *pool = (thr_pool_t *)arg;
int timedout;
job_t *job;
void *(*func)(void *);
active_t active;
struct timespec ts;
/*
* This is the worker's main loop. It will only be left
* if a timeout occurs or if the pool is being destroyed.
*/
(void) pthread_mutex_lock(&pool->pool_mutex); //加锁
pthread_cleanup_push(worker_cleanup, pool); //将工作线程清理函数压栈
active.active_tid = pthread_self(); //获得活跃线程id
for (;;) {
/*
* We don't know what this thread was doing during
* its last job, so we reset its signal mask and
* cancellation state back to the initial values.
*/
(void) pthread_sigmask(SIG_SETMASK, &fillset, NULL);
(void) pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL); //取消请求被延期直到
(void) pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
timedout = 0; //超时标志清零
pool->pool_idle++; //idle线程加1
if (pool->pool_flags & POOL_WAIT) //线程池状态为等待状态
notify_waiters(pool); //通知等待线程
while (pool->pool_head == NULL &&
!(pool->pool_flags & POOL_DESTROY)) { //任务队列为空并且线程池没有删除
if (pool->pool_nthreads <= pool->pool_minimum) { //如果当前工作线程小于等于线程池设置最小线程数
(void) pthread_cond_wait(&pool->pool_workcv,
&pool->pool_mutex); //阻塞当前线程
} else { //否则设置定时器
(void) clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += pool->pool_linger;
if (pool->pool_linger == 0 ||
pthread_cond_timedwait(&pool->pool_workcv,
&pool->pool_mutex, &ts) == ETIMEDOUT) {
timedout = 1; //超时标志置1
break;
}
}
}
pool->pool_idle--; //空闲线程减1
if (pool->pool_flags & POOL_DESTROY) //线程池状态为删除态,则跳出
break;
if ((job = pool->pool_head) != NULL) { //任务队列不为空
timedout = 0; //超时标志清零
func = job->job_func;
arg = job->job_arg;
pool->pool_head = job->job_next; //任务出队
if (job == pool->pool_tail) //若是任务队列最后一个任务
pool->pool_tail = NULL;
active.active_next = pool->pool_active; //将当期活跃工作线程加入活跃线程链表,头插,注意建立在栈中
pool->pool_active = &active;
(void) pthread_mutex_unlock(&pool->pool_mutex); //解锁
pthread_cleanup_push(job_cleanup, pool); //压栈任务清零函数
free(job); //释放当前任务
/*
* Call the specified job function.
*/
(void) func(arg); //指向真正的用户函数
/*
* If the job function calls pthread_exit(), the thread
* calls job_cleanup(pool) and worker_cleanup(pool);
* the integrity of the pool is thereby maintained.
*/
pthread_cleanup_pop(1); /* job_cleanup(pool) */
}
if (timedout && pool->pool_nthreads > pool->pool_minimum) { //超时并且当前工作线程大于线程池设置最小线程数
/*
* We timed out and there is no work to be done
* and the number of workers exceeds the minimum.
* Exit now to reduce the size of the pool.
*/
break;
}
}
pthread_cleanup_pop(1); /* worker_cleanup(pool) */
return (NULL);
}
static void
clone_attributes(pthread_attr_t *new_attr, pthread_attr_t *old_attr)
{
struct sched_param param;
void *addr;
size_t size;
int value;
(void) pthread_attr_init(new_attr);
//设置线程相关属性
if (old_attr != NULL) {
(void) pthread_attr_getstack(old_attr, &addr, &size);
/* don't allow a non-NULL thread stack address */
(void) pthread_attr_setstack(new_attr, NULL, size);
(void) pthread_attr_getscope(old_attr, &value);
(void) pthread_attr_setscope(new_attr, value);
(void) pthread_attr_getinheritsched(old_attr, &value);
(void) pthread_attr_setinheritsched(new_attr, value);
(void) pthread_attr_getschedpolicy(old_attr, &value);
(void) pthread_attr_setschedpolicy(new_attr, value);
(void) pthread_attr_getschedparam(old_attr, ¶m);
(void) pthread_attr_setschedparam(new_attr, ¶m);
(void) pthread_attr_getguardsize(old_attr, &size);
(void) pthread_attr_setguardsize(new_attr, size);
}
/* make all pool threads be detached threads */
(void) pthread_attr_setdetachstate(new_attr, PTHREAD_CREATE_DETACHED);
}
thr_pool_t *
thr_pool_create(uint_t min_threads, uint_t max_threads, uint_t linger,
pthread_attr_t *attr)
{
thr_pool_t *pool;
(void) sigfillset(&fillset); //加入所有信号
if (min_threads > max_threads || max_threads < 1) {
errno = EINVAL;
return (NULL);
}
if ((pool = malloc(sizeof (*pool))) == NULL) { //为线程池结构体分配内存
errno = ENOMEM;
return (NULL);
}
//初始化线程池结构体
(void) pthread_mutex_init(&pool->pool_mutex, NULL);
(void) pthread_cond_init(&pool->pool_busycv, NULL);
(void) pthread_cond_init(&pool->pool_workcv, NULL);
(void) pthread_cond_init(&pool->pool_waitcv, NULL);
pool->pool_active = NULL;
pool->pool_head = NULL;
pool->pool_tail = NULL;
pool->pool_flags = 0;
pool->pool_linger = linger;
pool->pool_minimum = min_threads;
pool->pool_maximum = max_threads;
pool->pool_nthreads = 0;
pool->pool_idle = 0;
/*
* We cannot just copy the attribute pointer.
* We need to initialize a new pthread_attr_t structure using
* the values from the caller-supplied attribute structure.
* If the attribute pointer is NULL, we need to initialize
* the new pthread_attr_t structure with default values.
*/
clone_attributes(&pool->pool_attr, attr); //设置线程创建属性
/* insert into the global list of all thread pools */
(void) pthread_mutex_lock(&thr_pool_lock); //加锁
if (thr_pools == NULL) { //建立链表第一个节点
pool->pool_forw = pool;
pool->pool_back = pool;
thr_pools = pool;
} else { //后面插入
thr_pools->pool_back->pool_forw = pool;
pool->pool_forw = thr_pools;
pool->pool_back = thr_pools->pool_back;
thr_pools->pool_back = pool;
}
(void) pthread_mutex_unlock(&thr_pool_lock); //解锁
return (pool);
}
int
thr_pool_queue(thr_pool_t *pool, void *(*func)(void *), void *arg)
{
job_t *job;
if ((job = malloc(sizeof (*job))) == NULL) { //为job节点分配空间
errno = ENOMEM;
return (-1);
}
//初始化job节点
job->job_next = NULL;
job->job_func = func;
job->job_arg = arg;
(void) pthread_mutex_lock(&pool->pool_mutex); //加锁
//job入队,尾部入队
if (pool->pool_head == NULL) //插入第一个job
pool->pool_head = job;
else
pool->pool_tail->job_next = job;
pool->pool_tail = job;
if (pool->pool_idle > 0) //有idle线程就从中唤醒一个
(void) pthread_cond_signal(&pool->pool_workcv);
else if (pool->pool_nthreads < pool->pool_maximum &&
create_worker(pool) == 0) //当前线程数小于设置的总线程数,则创建一个线程
pool->pool_nthreads++; //当前线程数加1
(void) pthread_mutex_unlock(&pool->pool_mutex); //解锁
return (0);
}
void
thr_pool_wait(thr_pool_t *pool)
{
(void) pthread_mutex_lock(&pool->pool_mutex); //加锁
pthread_cleanup_push((pFun)pthread_mutex_unlock, &pool->pool_mutex); //压栈解锁函数
while (pool->pool_head != NULL || pool->pool_active != NULL) { //任务队列不为空或者当前活跃线程链表不为空
pool->pool_flags |= POOL_WAIT; //置线程池状态为等待状态
(void) pthread_cond_wait(&pool->pool_waitcv, &pool->pool_mutex); //阻塞当前线程
}
pthread_cleanup_pop(1); /* pthread_mutex_unlock(&pool->pool_mutex); */
}
void
thr_pool_destroy(thr_pool_t *pool)
{
active_t *activep;
job_t *job;
(void) pthread_mutex_lock(&pool->pool_mutex); //加锁
pthread_cleanup_push((pFun)pthread_mutex_unlock, &pool->pool_mutex); //压栈解锁函数
/* mark the pool as being destroyed; wakeup idle workers */
pool->pool_flags |= POOL_DESTROY; //线程池状态置为删除态
(void) pthread_cond_broadcast(&pool->pool_workcv); //唤醒所有idle线程
/* cancel all active workers */
for (activep = pool->pool_active;
activep != NULL;
activep = activep->active_next) //取消所有活跃线程
(void) pthread_cancel(activep->active_tid);
/* wait for all active workers to finish */
while (pool->pool_active != NULL) {
pool->pool_flags |= POOL_WAIT;
(void) pthread_cond_wait(&pool->pool_waitcv, &pool->pool_mutex);
}
/* the last worker to terminate will wake us up */
while (pool->pool_nthreads != 0)
(void) pthread_cond_wait(&pool->pool_busycv, &pool->pool_mutex);
pthread_cleanup_pop(1); /* pthread_mutex_unlock(&pool->pool_mutex); */
/*
* Unlink the pool from the global list of all pools.
*/
(void) pthread_mutex_lock(&thr_pool_lock);
if (thr_pools == pool)
thr_pools = pool->pool_forw;
if (thr_pools == pool)
thr_pools = NULL;
else {
pool->pool_back->pool_forw = pool->pool_forw;
pool->pool_forw->pool_back = pool->pool_back;
}
(void) pthread_mutex_unlock(&thr_pool_lock);
/*
* There should be no pending jobs, but just in case...
*/
for (job = pool->pool_head; job != NULL; job = pool->pool_head) {
pool->pool_head = job->job_next;
free(job);
}
(void) pthread_attr_destroy(&pool->pool_attr);
free(pool);
}