Anchor-based 与 Anchor-free 优缺点

Anchor-based机制的优缺点

1. 优点:

(1)使用anchor机制产生密集的anchor box,使得网络可直接在此基础上进行目标分类及边界框坐标回归;

(2)密集的anchor box可有效提高网络目标召回能力,对于小目标检测来说提升非常明显。

2. 缺点:

(1)anchor机制中,需要设定的超参:尺度(scale)和长宽比( aspect ratio)是比较难设计的。这需要较强的先验知识。

(2)冗余框非常之多:一张图像内的目标毕竟是有限的,基于每个anchor设定大量anchor box会产生大量的easy-sample,即完全不包含目标的背景框。这会造成正负样本严重不平衡问题,也是one-stage算法难以赶超two-stage算法的原因之一。

(3)网络实质上是看不见anchor box的,在anchor box的基础上进行边界回归更像是一种在范围比较小时候的强行记忆。

(4)基于anchor box进行目标类别分类时,IOU阈值超参设置也是一个问题,0.5?0.7?有同学可能也想到了CVPR2018的论文Cascade R-CNN,专门来讨论这个问题。感兴趣的同学可以移步:Naiyan Wang:CVPR18 Detection文章选介(上)

 

1、anchor-free存在什么缺点?

2、物体检测的轮回: anchor-based 与 anchor-free

你可能感兴趣的:(AI之路,-,Face)