Python机器学习&数据分析-关联规则

Python机器学习&数据分析-关联规则

机器学习课程的笔记整理

一、关联规则前置知识

关联规则

  • 在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,超市也因此发现了一个规律,在购买婴儿尿布的年轻父亲们中,有30%~40%的人同时要买一些啤酒。超市随后调整了货架的摆放,把尿布和啤酒放在一起,明显增加了销售额。

Python机器学习&数据分析-关联规则_第1张图片

  • 若两个或多个变量的取值之间存在某种规律性,就称为关联

  • 关联规则是寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。

  • “在购买计算机的顾客中,有30%的人也同时购买了打印机”

支持度(support):一个项集或者规则在所有事务中出现的频率,σ(X):表示项集X的支持度计数

  • 项集X的支持度:s(X)=σ(X)/N
  • 规则X==>Y表示物品集X对物品集Y的支持度,也就是物品集X和物品集Y同时出现的概率
  • 某天共有100个顾客到商场购买物品,其中有30个顾客同时购买了啤酒和尿布,那么上述的关联规则的支持度就是30%

置信度(confidence):确定Y在包含X的事务中出现的频繁程度。c(X → Y) = σ(X∪Y)/σ(X)

  • p(Y│X)=p(XY)/p(X)。
  • 置信度反应了关联规则的可信度—购买了项目集X中的商品的顾客同时也购买了Y中商品的可能性有多大
  • 购买薯片的顾客中有50%的人购买了可乐,则置信度为50%

提升度(lift):物品集A的出现对物品集B的出现概率发生了多大的变化

  • lift(A==>B)=confidence(A==>B)/support(B)=p(B|A)/p(B)
  • 现在有** 1000 ** 个消费者,有** 500** 人购买了茶叶,其中有** 450人同时** 购买了咖啡,另** 50人** 没有。由于** confidence(茶叶=>咖啡)=450/500=90%** ,由此可能会认为喜欢喝茶的人往往喜欢喝咖啡。但如果另外没有购买茶叶的** 500人** ,其中同样有** 450人** 购买了咖啡,同样是很高的** 置信度90%** ,由此,得到不爱喝茶的也爱喝咖啡。这样看来,其实是否购买咖啡,与有没有购买茶叶并没有关联,两者是相互独立的,其** 提升度90%/[(450+450)/1000]=1** 。

由此可见,lift正是弥补了confidence的这一缺陷,if lift=1,X与Y独立,X对Y出现的可能性没有提升作用,其值越大(lift>1),则表明X对Y的提升程度越大,也表明关联性越强。

二、自定义购物数据集的例子

在anaconda命令行下通过

conda install -c conda-forge mlxtend

import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

自定义一份购物数据集

data = {"ID":[1,2,3,4,5,6],
       "Onion":[1,0,0,1,1,1],
       "Potato":[1,1,0,1,1,1],
       "Burger":[1,1,0,0,1,1],
       "Milk":[0,1,1,1,0,1],
       "Beer":[0,0,1,0,1,0]}
df = pd.DataFrame(data)
df = df[['ID', 'Onion', 'Potato', 'Burger', 'Milk', 'Beer' ]]
df
ID Onion Potato Burger Milk Beer
0 1 1 1 1 0 0
1 2 0 1 1 1 0
2 3 0 0 0 1 1
3 4 1 1 0 1 0
4 5 1 1 1 0 1
5 6 1 1 1 1 0

设置支持度 (support) 来选择频繁项集.

  • 选择最小支持度为50%

  • apriori(df, min_support=0.5, use_colnames=True)

frequent_itemsets = apriori(df[['Onion', 'Potato', 'Burger', 'Milk', 'Beer' ]],min_support=0.5, use_colnames=True)
frequent_itemsets
support itemsets
0 0.666667 (Onion)
1 0.833333 (Potato)
2 0.666667 (Burger)
3 0.666667 (Milk)
4 0.666667 (Onion, Potato)
5 0.500000 (Onion, Burger)
6 0.666667 (Potato, Burger)
7 0.500000 (Milk, Potato)
8 0.500000 (Onion, Potato, Burger)

计算规则

  • association_rules(df, metric='lift', min_threshold=1)
  • 可以指定不同的衡量标准与最小阈值
rules = association_rules(frequent_itemsets,metric="lift",min_threshold=1)
rules
antecedents consequents antecedent support consequent support support confidence lift leverage conviction
0 (Onion) (Potato) 0.666667 0.833333 0.666667 1.00 1.200 0.111111 inf
1 (Potato) (Onion) 0.833333 0.666667 0.666667 0.80 1.200 0.111111 1.666667
2 (Onion) (Burger) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
3 (Burger) (Onion) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
4 (Potato) (Burger) 0.833333 0.666667 0.666667 0.80 1.200 0.111111 1.666667
5 (Burger) (Potato) 0.666667 0.833333 0.666667 1.00 1.200 0.111111 inf
6 (Onion, Potato) (Burger) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
7 (Onion, Burger) (Potato) 0.500000 0.833333 0.500000 1.00 1.200 0.083333 inf
8 (Potato, Burger) (Onion) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
9 (Onion) (Potato, Burger) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
10 (Potato) (Onion, Burger) 0.833333 0.500000 0.500000 0.60 1.200 0.083333 1.250000
11 (Burger) (Onion, Potato) 0.666667 0.666667 0.500000 0.75 1.125 0.055556 1.333333
rules[ ( rules["lift"] > 1.125) & (rules["confidence"] > 0.8) ]
antecedents consequents antecedent support consequent support support confidence lift leverage conviction
0 (Onion) (Potato) 0.666667 0.833333 0.666667 1.0 1.2 0.111111 inf
5 (Burger) (Potato) 0.666667 0.833333 0.666667 1.0 1.2 0.111111 inf
7 (Onion, Burger) (Potato) 0.500000 0.833333 0.500000 1.0 1.2 0.083333 inf

这几条结果就比较有价值了:

  • (洋葱和马铃薯)(汉堡和马铃薯)可以搭配着来卖
  • 如果洋葱和汉堡都在购物篮中, 顾客买马铃薯的可能性也比较高,如果他篮子里面没有,可以推荐一下.

三、模拟实际购物的例子

retail_shopping_basket = {'ID':[1,2,3,4,5,6],
                         'Basket':[['Beer', 'Diaper', 'Pretzels', 'Chips', 'Aspirin'],
                                   ['Diaper', 'Beer', 'Chips', 'Lotion', 'Juice', 'BabyFood', 'Milk'],
                                   ['Soda', 'Chips', 'Milk'],
                                   ['Soup', 'Beer', 'Diaper', 'Milk', 'IceCream'],
                                   ['Soda', 'Coffee', 'Milk', 'Bread'],
                                   ['Beer', 'Chips']
                                  ]
                         }
retail = pd.DataFrame(retail_shopping_basket)
retail = retail[["ID","Basket"]]
pd.options.display.max_colwidth=100
retail
ID Basket
0 1 [Beer, Diaper, Pretzels, Chips, Aspirin]
1 2 [Diaper, Beer, Chips, Lotion, Juice, BabyFood, Milk]
2 3 [Soda, Chips, Milk]
3 4 [Soup, Beer, Diaper, Milk, IceCream]
4 5 [Soda, Coffee, Milk, Bread]
5 6 [Beer, Chips]

注意:

数据集中都是字符串组成的,需要转换成数值编码

retail_id = retail.drop("Basket",1)
retail_id
ID
0 1
1 2
2 3
3 4
4 5
5 6
retail_Basket = retail.Basket.str.join(",")
retail_Basket
0              Beer,Diaper,Pretzels,Chips,Aspirin
1    Diaper,Beer,Chips,Lotion,Juice,BabyFood,Milk
2                                 Soda,Chips,Milk
3                  Soup,Beer,Diaper,Milk,IceCream
4                          Soda,Coffee,Milk,Bread
5                                      Beer,Chips
Name: Basket, dtype: object
retail_Basket = retail_Basket.str.get_dummies(",")
retail_Basket
Aspirin BabyFood Beer Bread Chips Coffee Diaper IceCream Juice Lotion Milk Pretzels Soda Soup
0 1 0 1 0 1 0 1 0 0 0 0 1 0 0
1 0 1 1 0 1 0 1 0 1 1 1 0 0 0
2 0 0 0 0 1 0 0 0 0 0 1 0 1 0
3 0 0 1 0 0 0 1 1 0 0 1 0 0 1
4 0 0 0 1 0 1 0 0 0 0 1 0 1 0
5 0 0 1 0 1 0 0 0 0 0 0 0 0 0
retail = retail_id.join(retail_Basket)
retail
ID Aspirin BabyFood Beer Bread Chips Coffee Diaper IceCream Juice Lotion Milk Pretzels Soda Soup
0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0
1 2 0 1 1 0 1 0 1 0 1 1 1 0 0 0
2 3 0 0 0 0 1 0 0 0 0 0 1 0 1 0
3 4 0 0 1 0 0 0 1 1 0 0 1 0 0 1
4 5 0 0 0 1 0 1 0 0 0 0 1 0 1 0
5 6 0 0 1 0 1 0 0 0 0 0 0 0 0 0
frequent_items_2 = apriori(retail.drop("ID",1),use_colnames=True)
frequent_items_2
support itemsets
0 0.666667 (Beer)
1 0.666667 (Chips)
2 0.500000 (Diaper)
3 0.666667 (Milk)
4 0.500000 (Chips, Beer)
5 0.500000 (Diaper, Beer)

如果光考虑支持度support(X>Y), [Beer, Chips] 和 [Beer, Diaper] 都是很频繁的,哪一种组合更相关呢?

association_rules(frequent_items_2,metric="lift")
antecedents consequents antecedent support consequent support support confidence lift leverage conviction
0 (Chips) (Beer) 0.666667 0.666667 0.5 0.75 1.125 0.055556 1.333333
1 (Beer) (Chips) 0.666667 0.666667 0.5 0.75 1.125 0.055556 1.333333
2 (Diaper) (Beer) 0.500000 0.666667 0.5 1.00 1.500 0.166667 inf
3 (Beer) (Diaper) 0.666667 0.500000 0.5 0.75 1.500 0.166667 2.000000

显然{Diaper, Beer}更相关一些

四、电影题材关联的例子

数据集来源: MovieLens (small)

movies = pd.read_csv("ml-latest-small/movies.csv")
movies.head(10)
movieId title genres
0 1 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
1 2 Jumanji (1995) Adventure|Children|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama|Romance
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy|Romance
7 8 Tom and Huck (1995) Adventure|Children
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller

数据中包括电影名字与电影类型的标签,第一步还是先转换成one-hot格式

movies_one = movies.drop("genres",1).join(movies.genres.str.get_dummies())
pd.options.display.max_columns=100
movies_one.head()
movieId title (no genres listed) Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western
0 1 Toy Story (1995) 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 2 Jumanji (1995) 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 3 Grumpier Old Men (1995) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 4 Waiting to Exhale (1995) 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
4 5 Father of the Bride Part II (1995) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
movies_one.shape
(9125, 22)

数据集包括9125部电影,一共有20种不同类型。

movies_one.set_index(["movieId","title"],inplace=True)
movies_one.head()
(no genres listed) Action Adventure Animation Children Comedy Crime Documentary Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western
movieId title
1 Toy Story (1995) 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 Jumanji (1995) 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3 Grumpier Old Men (1995) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 Waiting to Exhale (1995) 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
5 Father of the Bride Part II (1995) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
frequent_itemsets_movies = apriori(movies_one,use_colnames=True,min_support=0.025)
frequent_itemsets_movies
support itemsets
0 0.169315 (Action)
1 0.122411 (Adventure)
2 0.048986 (Animation)
3 0.063890 (Children)
4 0.363288 (Comedy)
5 0.120548 (Crime)
6 0.054247 (Documentary)
7 0.478356 (Drama)
8 0.071671 (Fantasy)
9 0.096110 (Horror)
10 0.043178 (Musical)
11 0.059507 (Mystery)
12 0.169315 (Romance)
13 0.086795 (Sci-Fi)
14 0.189479 (Thriller)
15 0.040219 (War)
16 0.058301 (Action, Adventure)
17 0.037589 (Comedy, Action)
18 0.038247 (Action, Crime)
19 0.051178 (Action, Drama)
20 0.040986 (Action, Sci-Fi)
21 0.062904 (Thriller, Action)
22 0.029260 (Children, Adventure)
23 0.036712 (Comedy, Adventure)
24 0.032438 (Drama, Adventure)
25 0.030685 (Fantasy, Adventure)
26 0.027726 (Sci-Fi, Adventure)
27 0.027068 (Children, Animation)
28 0.032877 (Children, Comedy)
29 0.032438 (Comedy, Crime)
30 0.104000 (Comedy, Drama)
31 0.026959 (Fantasy, Comedy)
32 0.090082 (Comedy, Romance)
33 0.067616 (Crime, Drama)
34 0.057863 (Thriller, Crime)
35 0.031671 (Mystery, Drama)
36 0.101260 (Drama, Romance)
37 0.087123 (Thriller, Drama)
38 0.031014 (War, Drama)
39 0.043397 (Horror, Thriller)
40 0.036055 (Thriller, Mystery)
41 0.028932 (Thriller, Sci-Fi)
42 0.035068 (Comedy, Drama, Romance)
43 0.032000 (Crime, Thriller, Drama)
rules_movies = association_rules(frequent_itemsets_movies,metric="lift",min_threshold=1.25)
rules_movies
antecedents consequents antecedent support consequent support support confidence lift leverage conviction
0 (Action) (Adventure) 0.169315 0.122411 0.058301 0.344337 2.812955 0.037575 1.338475
1 (Adventure) (Action) 0.122411 0.169315 0.058301 0.476276 2.812955 0.037575 1.586111
2 (Action) (Crime) 0.169315 0.120548 0.038247 0.225890 1.873860 0.017836 1.136081
3 (Crime) (Action) 0.120548 0.169315 0.038247 0.317273 1.873860 0.017836 1.216716
4 (Action) (Sci-Fi) 0.169315 0.086795 0.040986 0.242071 2.789015 0.026291 1.204870
5 (Sci-Fi) (Action) 0.086795 0.169315 0.040986 0.472222 2.789015 0.026291 1.573929
6 (Thriller) (Action) 0.189479 0.169315 0.062904 0.331984 1.960746 0.030822 1.243510
7 (Action) (Thriller) 0.169315 0.189479 0.062904 0.371521 1.960746 0.030822 1.289654
8 (Children) (Adventure) 0.063890 0.122411 0.029260 0.457976 3.741299 0.021439 1.619096
9 (Adventure) (Children) 0.122411 0.063890 0.029260 0.239033 3.741299 0.021439 1.230158
10 (Fantasy) (Adventure) 0.071671 0.122411 0.030685 0.428135 3.497518 0.021912 1.534608
11 (Adventure) (Fantasy) 0.122411 0.071671 0.030685 0.250671 3.497518 0.021912 1.238881
12 (Sci-Fi) (Adventure) 0.086795 0.122411 0.027726 0.319444 2.609607 0.017101 1.289519
13 (Adventure) (Sci-Fi) 0.122411 0.086795 0.027726 0.226500 2.609607 0.017101 1.180614
14 (Children) (Animation) 0.063890 0.048986 0.027068 0.423671 8.648758 0.023939 1.650122
15 (Animation) (Children) 0.048986 0.063890 0.027068 0.552573 8.648758 0.023939 2.092205
16 (Children) (Comedy) 0.063890 0.363288 0.032877 0.514580 1.416453 0.009666 1.311672
17 (Comedy) (Children) 0.363288 0.063890 0.032877 0.090498 1.416453 0.009666 1.029255
18 (Comedy) (Romance) 0.363288 0.169315 0.090082 0.247964 1.464511 0.028572 1.104581
19 (Romance) (Comedy) 0.169315 0.363288 0.090082 0.532039 1.464511 0.028572 1.360609
20 (Thriller) (Crime) 0.189479 0.120548 0.057863 0.305379 2.533256 0.035022 1.266089
21 (Crime) (Thriller) 0.120548 0.189479 0.057863 0.480000 2.533256 0.035022 1.558693
22 (Drama) (Romance) 0.478356 0.169315 0.101260 0.211684 1.250236 0.020267 1.053746
23 (Romance) (Drama) 0.169315 0.478356 0.101260 0.598058 1.250236 0.020267 1.297810
24 (War) (Drama) 0.040219 0.478356 0.031014 0.771117 1.612015 0.011775 2.279087
25 (Drama) (War) 0.478356 0.040219 0.031014 0.064834 1.612015 0.011775 1.026321
26 (Horror) (Thriller) 0.096110 0.189479 0.043397 0.451539 2.383052 0.025186 1.477810
27 (Thriller) (Horror) 0.189479 0.096110 0.043397 0.229034 2.383052 0.025186 1.172413
28 (Thriller) (Mystery) 0.189479 0.059507 0.036055 0.190283 3.197672 0.024779 1.161509
29 (Mystery) (Thriller) 0.059507 0.189479 0.036055 0.605893 3.197672 0.024779 2.056601
30 (Thriller) (Sci-Fi) 0.189479 0.086795 0.028932 0.152689 1.759206 0.012486 1.077769
31 (Sci-Fi) (Thriller) 0.086795 0.189479 0.028932 0.333333 1.759206 0.012486 1.215781
32 (Comedy, Drama) (Romance) 0.104000 0.169315 0.035068 0.337197 1.991536 0.017460 1.253291
33 (Romance) (Comedy, Drama) 0.169315 0.104000 0.035068 0.207120 1.991536 0.017460 1.130057
34 (Drama, Crime) (Thriller) 0.067616 0.189479 0.032000 0.473258 2.497673 0.019188 1.538742
35 (Thriller, Drama) (Crime) 0.087123 0.120548 0.032000 0.367296 3.046884 0.021497 1.389989
36 (Crime) (Thriller, Drama) 0.120548 0.087123 0.032000 0.265455 3.046884 0.021497 1.242778
37 (Thriller) (Drama, Crime) 0.189479 0.067616 0.032000 0.168884 2.497673 0.019188 1.121845
rules_movies[(rules_movies.lift>4)].sort_values(by=['lift'], ascending=False)
antecedents consequents antecedent support consequent support support confidence lift leverage conviction
14 (Children) (Animation) 0.063890 0.048986 0.027068 0.423671 8.648758 0.023939 1.650122
15 (Animation) (Children) 0.048986 0.063890 0.027068 0.552573 8.648758 0.023939 2.092205

Children和Animation 这俩题材是最相关的

movies[(movies.genres.str.contains('Children')) & (~movies.genres.str.contains('Animation'))]

  8917
  135266
  Zenon: The Zequel (2001)
  Adventure|Children|Comedy|Sci-Fi


  8918
  135268
  Zenon: Z3 (2004)
  Adventure|Children|Comedy


  8960
  139620
  Everything's Gonna Be Great (1998)
  Adventure|Children|Comedy|Drama


  8967
  140152
  Dreamcatcher (2015)
  Children|Crime|Documentary


  8981
  140747
  16 Wishes (2010)
  Children|Drama|Fantasy


  9052
  149354
  Sisters (2015)
  Children|Comedy

movieId title genres
1 2 Jumanji (1995) Adventure|Children|Fantasy
7 8 Tom and Huck (1995) Adventure|Children
26 27 Now and Then (1995) Children|Drama
32 34 Babe (1995) Children|Drama
36 38 It Takes Two (1995) Children|Comedy
51 54 Big Green, The (1995) Children|Comedy
56 60 Indian in the Cupboard, The (1995) Adventure|Children|Fantasy
74 80 White Balloon, The (Badkonake sefid) (1995) Children|Drama
81 87 Dunston Checks In (1996) Children|Comedy
98 107 Muppet Treasure Island (1996) Adventure|Children|Comedy|Musical
114 126 NeverEnding Story III, The (1994) Adventure|Children|Fantasy
125 146 Amazing Panda Adventure, The (1995) Adventure|Children
137 158 Casper (1995) Adventure|Children
148 169 Free Willy 2: The Adventure Home (1995) Adventure|Children|Drama
160 181 Mighty Morphin Power Rangers: The Movie (1995) Action|Children
210 238 Far From Home: The Adventures of Yellow Dog (1995) Adventure|Children
213 241 Fluke (1995) Children|Drama
215 243 Gordy (1995) Children|Comedy|Fantasy
222 250 Heavyweights (Heavy Weights) (1995) Children|Comedy
230 258 Kid in King Arthur's Court, A (1995) Adventure|Children|Comedy|Fantasy|Romance
234 262 Little Princess, A (1995) Children|Drama
280 314 Secret of Roan Inish, The (1994) Children|Drama|Fantasy|Mystery
308 343 Baby-Sitters Club, The (1995) Children
320 355 Flintstones, The (1994) Children|Comedy|Fantasy
326 362 Jungle Book, The (1994) Adventure|Children|Romance
338 374 Richie Rich (1994) Children|Comedy
361 410 Addams Family Values (1993) Children|Comedy|Fantasy
371 421 Black Beauty (1994) Adventure|Children|Drama
404 455 Free Willy (1993) Adventure|Children|Drama
431 484 Lassie (1994) Adventure|Children
... ... ... ...
7707 83177 Yogi Bear (2010) Children|Comedy
7735 84312 Home Alone 4 (2002) Children|Comedy|Crime
7823 87383 Curly Top (1935) Children|Musical|Romance
7900 89881 Superman and the Mole-Men (1951) Children|Mystery|Sci-Fi
7929 90866 Hugo (2011) Children|Drama|Mystery
7935 91094 Muppets, The (2011) Children|Comedy|Musical
7942 91286 Little Colonel, The (1935) Children|Comedy|Crime|Drama
7971 91886 Dolphin Tale (2011) Children|Drama
8096 95740 Adventures of Mary-Kate and Ashley, The: The Case of the United States Navy Adventure (1997) Children|Musical|Mystery
8199 98441 Rebecca of Sunnybrook Farm (1938) Children|Comedy|Drama|Musical
8200 98458 Baby Take a Bow (1934) Children|Comedy|Drama
8377 104074 Percy Jackson: Sea of Monsters (2013) Adventure|Children|Fantasy
8450 106441 Book Thief, The (2013) Children|Drama|War
8558 110461 We Are the Best! (Vi är bäst!) (2013) Children|Comedy|Drama
8592 111659 Maleficent (2014) Action|Adventure|Children|IMAX
8689 115139 Challenge to Lassie (1949) Children|Drama
8761 118997 Into the Woods (2014) Children|Comedy|Fantasy|Musical
8765 119155 Night at the Museum: Secret of the Tomb (2014) Adventure|Children|Comedy|Fantasy
8766 119655 Seventh Son (2014) Adventure|Children|Fantasy
8792 122932 Elsa & Fred (2014) Children|Comedy|Romance
8845 130073 Cinderella (2015) Children|Drama|Fantasy|Romance
8850 130450 Pan (2015) Adventure|Children|Fantasy
8871 132046 Tomorrowland (2015) Action|Adventure|Children|Mystery|Sci-Fi

336 rows × 3 columns

你可能感兴趣的:(python数据分析与展示,Python数据分析)