Python中文文本聚类

原文:https://blog.csdn.net/yyxyyx10/article/details/63685382

 

  • 简介
  • 一 切词
  • 二 去除停用词
  • 三 构建词袋空间VSMvector space model
  • 四 將单词出现的次数转化为权值TF-IDF
  • 五 用K-means算法进行聚类
  • 六 总结

 

简介

查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关於python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关於文本聚类的Kmeans聚类的原理Java实现R语言实现,甚至都有一个C++的实现

正好我写的一些文章,我没能很好的分类,我想能不能通过聚类的方法將一些相似的文章进行聚类,然后我再看每个聚类大概的主题是什么,给每个聚类一个標签,这样也是完成了分类。

中文文本聚类主要有一下几个步骤,下面將分別详细介绍:

  • 切词
  • 去除停用词
  • 构建词袋空间VSM(vector space model)
  • TF-IDF构建词权重
  • 使用K-means算法

一、 切词

这里中文切词使用的是结巴切词,github项目主页,作者微博

github项目主页上有结巴切词的详细安装方式,以及示例说明,这里不再详述,一般情况下,可以使用如下方式安装。

# pip install jieba

或者

# easy_install jieba

还可以参考一下文章: 
1.Python中文分词组件 jieba 
2.python 结巴分词(jieba)学习

二、 去除停用词

结巴分词虽然有去除停用词的功能,但是好像只是给jieba.analyse组建使用的,並不给jieba.cut使用,所以这里我们还是要自己构建停用词文件,以及去除停用词。 
常见的中文停用词有: 
1. 中文停用词表(比较全面,有1208个停用词) 
2. 最全中文停用词表整理(1893个)

实现代码如下(代码比较水):

def read_from_file(file_name):
    with open(file_name,"r") as fp:
        words = fp.read()
    return words
def stop_words(stop_word_file):
    words = read_from_file(stop_word_file)
    result = jieba.cut(words)
    new_words = []
    for r in result:
        new_words.append(r)
    return set(new_words)
def del_stop_words(words,stop_words_set):
# words是已经切词但是没有去除停用词的文档。
# 返回的会是去除停用词后的文档
    result = jieba.cut(words)
    new_words = []
    for r in result:
        if r not in stop_words_set:
            new_words.append(r)
    return new_words

三、 构建词袋空间VSM(vector space model)

接下来是构建词袋空间,我们的步骤如下 
1. 將所有文档读入到程序中,再將每个文档切词。 
2. 去除每个文档中的停用词。 
3. 统计所有文档的词集合(sk-learn有相关函数,但是我知道能对中文也使用)。 
4. 对每个文档,都將构建一个向量,向量的值是词语在本文档中出现的次数。 


这举个例子,假设有两个文本,1.我爱上海,我爱中国2.中国伟大,上海漂亮 
那么切词之后就有一下词语上海中国伟大漂亮,(逗號也可能被切词)。 
再假设停用词是我 ,,那么去除停用词后,剩余的词语就是 
上海中国伟大漂亮 
然后我们对文档1和文档2构建向量,那么向量將如下:

文本 上海 中国 伟大 漂亮
文档1 2 1 1 0 0
文档2 0 1 1 1 1

代码如下:

def get_all_vector(file_path,stop_words_set):
    names = [ os.path.join(file_path,f) for f in os.listdir(file_path) ]
    posts = [ open(name).read() for name in names ]
    docs = []
    word_set = set()
    for post in posts:
        doc = del_stop_words(post,stop_words_set)
        docs.append(doc)
        word_set |= set(doc)
        #print len(doc),len(word_set)

    word_set = list(word_set)
    docs_vsm = []
    #for word in word_set[:30]:
        #print word.encode("utf-8"),
    for doc in docs:
        temp_vector = []
        for word in word_set:
            temp_vector.append(doc.count(word) * 1.0)
        #print temp_vector[-30:-1]
        docs_vsm.append(temp_vector)

    docs_matrix = np.array(docs_vsm)
  1. 在python中表示可能如下[[2,1,1,0,0],[0,1,1,1,]],我们尽可能將其放入到numpy的array或者matrix中方便下面TF-IDF的计算。

四、 將单词出现的次数转化为权值(TF-IDF)

换句话说,我们的vsm保存的本来已经是向量的形式,我们为什么还需要TF-IDF的形式呢?我认为这就是为了將单词出现的次数转化为权值。 
关於TF-IDF的介绍可以参考网上的文章: 
1. 基本文本聚类方法 
2. TF-IDF百度百科 
3. TF-IDF维基百科英文版

这里需要注意的是关於TF(term frequency)的计算,关於IDF(Inverse document frequency)的计算,我看公式基本上都是一样的: 
逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再將得到的商取对数得到: 

本公式用 LaTex 编辑,推荐一个令人惊嘆的网站:Detexify 
其中 
N :语料库中的文件总数 
dD,td∣ :包含词语的文件数目(即的文件数目)如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用作为分母。
 

然而百度百科以及网上大部分关於TF的介绍其实是有问题的,TF-IDF百度百科中说词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率,那么很明显这个计算公式就为: 

然而这种计算方式常常会导致TF过小,其实TF-IDF並不是只有一种计算方式,而是多种,这个时候就体现出维基百科的威力了,具体的关於TF-IDF的介绍还是要参照维基百科。

如果不熟悉numpy,可以参考numpy官方文档

column_sum = [ float(len(np.nonzero(docs_matrix[:,i])[0])) for i in range(docs_matrix.shape[1]) ]
column_sum = np.array(column_sum)
column_sum = docs_matrix.shape[0] / column_sum
idf =  np.log(column_sum)
idf =  np.diag(idf)
# 请仔细想想,根绝IDF的定义,计算词的IDF並不依赖於某个文档,所以我们提前计算好。
# 注意一下计算都是矩阵运算,不是单个变量的运算。
for doc_v in docs_matrix:
    if doc_v.sum() == 0:
        doc_v = doc_v / 1
    else:
        doc_v = doc_v / (doc_v.sum())
    tfidf = np.dot(docs_matrix,idf)
    return names,tfidf

现在我们拥有的矩阵的性质如下,

  • 列是所有文档总共的词的集合。
  • 每行代表一个文档。
  • 每行是一个向量,向量的每个值是这个词的权值。

五、 用K-means算法进行聚类

到这个时候,我们可以使用kmeans算法进行聚类,对kmeans算法来说,它看到已经不是文本了,只是矩阵而已,所以我们用的也是通用的kmeans算法就可以了。 
关於kmeans的介绍可以见於如下的文章: 
1. 基本Kmeans算法介绍及其实现 
2. K-means百度百科 
3. 浅谈Kmeans聚类 
所不同的是,在大部分的文本聚类中,人们通常用余弦距离(很好的介绍文章)而不是欧氏距离进行计算,难道是因为稀疏矩阵的原因,我並不太明白。

下面的代码来自《机器学习实战》第十章的代码:

def gen_sim(A,B):
    num = float(np.dot(A,B.T))
    denum = np.linalg.norm(A) * np.linalg.norm(B)
    if denum == 0:
        denum = 1
    cosn = num / denum
    sim = 0.5 + 0.5 * cosn
    return sim
def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

def kMeans(dataSet, k, distMeas=gen_sim, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points 
                                      #to a centroid, also holds SE of each point
    centroids = createCent(dataSet, k)
    clusterChanged = True
    counter = 0
    while counter <= 50:
        counter += 1
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; 
            minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; 
                    minIndex = j
            if clusterAssment[i,0] != minIndex: 
                clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        #print centroids
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
    return centroids, clusterAssment

六、 总结

基本上到这里为止,一个可用的中文文本聚类工具已经完成了,github项目地址。 
其效果到底怎么样呢?

我自己有一些未分类的文章属於人生感悟(羞羞脸)类別的共有182篇,在切词以及去除停用词之后,共得到13202个词语,我设置K=10,嗯,效果並不是太好,当然可能有一下原因:

  • 文档本身已经属於高度分类的了,基於词频的聚类並不能发现关於这些文章间的细微的区別。
  • 算法需要优化,可能有些地方可以设置修改一下。

总之,在学习若干天机器学习后,第一次实践之旅算是结束了。

本文转载自:http://blog.csdn.net/likeyiyy/article/details/48982909

你可能感兴趣的:(#,4,Python,#,11,人工智能)