Tools:IOU、NMS、RAdam、one-hot
▶IOU
def iou(box, boxes, isMin = False):
area = (box[2] - box[0]) * (box[3] - box[1])
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
x1 = np.maximum(box[0], boxes[:, 0])
y1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[2], boxes[:, 2])
y2 = np.minimum(box[3], boxes[:, 3])
w = np.maximum(0, x2 - x1)
h = np.maximum(0, y2 - y1)
inter = w * h
if isMin:
ovr = np.true_divide(inter, np.minimum(area, areas))
else:
ovr = np.true_divide(inter, (areas + area - inter))
return ovr
▶NMS
def nms(boxes, threth = 0.3, isMin = False):
"""
防止传入空boxes:
:param boxes:[x1, y1, x2, y2, c]
:return:r_boxes
"""
r_boxes = []
if boxes.shape[0] == 0:
return np.array([])
_boxes = boxes[(-boxes[:, 0]).argsort()]
while _boxes.shape[0] > 1:
a_box = _boxes[0]
b_boxes = _boxes[1:]
r_boxes.append(a_box)
index = np.where(iou(a_box[1:5], b_boxes[:, 1:5], isMin) < threth)
_boxes = b_boxes[index]
if _boxes.shape[0] > 0:
r_boxes.append(_boxes[0])
r_boxes = np.stack(r_boxes)
return r_boxes
▶one-hot(Pytorch提供了one-hot函数可调,torch.nn.functional.one_hot( ) )
def one_hot1(x, num_class=None):
ohx = np.zeros(num_class)
ohx[int(x)] = 1
return ohx
def one_hot2(x, num_class=None):
if not num_class:
num_class = numpy.max(x) + 1
ohx = numpy.zeros((int(x), num_class))
ohx[range(int(x)), int(x)] = 1
return ohx[0]
def one_hot3(x, num_class=None):
return torch.zeros((len(x), num_class)).scatter(1, x, 1)
▶RAdam
class RAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
self.degenerated_to_sgd = degenerated_to_sgd
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
for param in params:
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
param['buffer'] = [[None, None, None] for _ in range(10)]
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
buffer=[[None, None, None] for _ in range(10)])
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('RAdam does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state['step'] += 1
buffered = group['buffer'][int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
if N_sma >= 5:
step_size = math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
N_sma_max - 2)) / (1 - beta1 ** state['step'])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1 ** state['step'])
else:
step_size = -1
buffered[2] = step_size
if N_sma >= 5:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
p.data.copy_(p_data_fp32)
return loss