NumPy存取与函数

NumPy存取与函数

import numpy as np

numpy存取csv文件函数

a = np.arange(100).reshape(5, 20)
np.savetxt('a.csv', a, fmt='%d', delimiter=',')

参数fmt表示的是存入的数据类型,参数delimiter表示的是分隔符

b = np.loadtxt('a.csv', delimiter=',')
b
array([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
        13., 14., 15., 16., 17., 18., 19.],
       [20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
        33., 34., 35., 36., 37., 38., 39.],
       [40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52.,
        53., 54., 55., 56., 57., 58., 59.],
       [60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72.,
        73., 74., 75., 76., 77., 78., 79.],
       [80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92.,
        93., 94., 95., 96., 97., 98., 99.]])

随机数函数

numpy库的子库random中包含了许多生成随机数的函数

rand 随机生成的0-1的小数

np.random.rand(3, 4, 5)
array([[[0.31758507, 0.90577837, 0.57722286, 0.93548532, 0.67162346],
        [0.60669063, 0.37058699, 0.09268176, 0.07844332, 0.31498516],
        [0.89279518, 0.48433622, 0.33788483, 0.63917024, 0.21380341],
        [0.93540191, 0.13810566, 0.84765187, 0.81036746, 0.73655162]],

       [[0.29426517, 0.64758244, 0.79142543, 0.99561557, 0.54726003],
        [0.13982297, 0.65018781, 0.24860317, 0.82961137, 0.08030367],
        [0.06089794, 0.57703706, 0.76067903, 0.3365547 , 0.5817126 ],
        [0.90333741, 0.84033221, 0.44258611, 0.79047538, 0.95275519]],

       [[0.92782177, 0.46044411, 0.13944521, 0.79174124, 0.22450652],
        [0.64648888, 0.98737518, 0.71785434, 0.7538382 , 0.36011979],
        [0.91529664, 0.43811212, 0.17316345, 0.83911132, 0.2484261 ],
        [0.94319115, 0.43730428, 0.2671841 , 0.57026498, 0.19784627]]])

randn 生成呈现正态分布的小数

np.random.randn(3, 4, 5)
array([[[-1.12557871, -1.36187298,  2.12778214,  1.14716151,
         -0.20528341],
        [-0.26978878,  1.20338214, -0.34394721,  0.65791381,
          0.4740779 ],
        [-1.52342418, -0.95010058,  1.85885593,  0.83989784,
          2.37659475],
        [-0.31869578, -0.20959431, -0.04414596,  0.7047024 ,
         -0.69207778]],

       [[-2.08112153,  1.41569022, -0.73259308,  1.38272686,
          0.51822214],
        [ 1.35657693, -1.44589925, -1.32261999, -0.59110943,
         -0.51575457],
        [ 0.28218551, -0.80553322, -1.57620057, -0.47332692,
         -0.01079564],
        [-0.51143865, -0.32561054, -0.05456582, -0.56157563,
          0.69832108]],

       [[ 0.82902173, -0.27178094, -1.03625369,  2.12448222,
         -1.78156889],
        [ 0.42228067, -0.05892293, -0.08577194, -0.19544103,
          0.13547228],
        [-1.02194311, -0.45929995, -0.56612156, -0.6817057 ,
          0.36600193],
        [-0.08898777, -0.61071157,  1.06798344, -0.84894722,
         -1.19189576]]])

randint 生成随机整数

np.random.randint(100, 200, (3, 4, 5)) 
array([[[167, 118, 133, 165, 170],
        [181, 135, 113, 181, 136],
        [156, 145, 105, 129, 144],
        [169, 108, 185, 177, 117]],

       [[175, 172, 130, 160, 122],
        [145, 191, 167, 124, 105],
        [117, 133, 146, 182, 136],
        [198, 190, 165, 123, 169]],

       [[131, 196, 128, 115, 199],
        [121, 131, 141, 116, 109],
        [101, 193, 147, 156, 144],
        [131, 145, 119, 155, 153]]])

seed 设定随机种子

np.random.seed(10)

当随机种子相同时生成的随机数是相同的

array数据特征函数

a = np.arange(15).reshape((3, 5))
a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

sum 对array的元素求和

np.sum(a)

105

np.mean(a)

7.0

mean也可以在行和列求平均数

np.mean(a, axis=1)
array([ 2.,  7., 12.])
np.mean(a, axis=0)
array([5., 6., 7., 8., 9.])

average 加权平均数

np.average(a)

7.0

默认权值为1

np.average(a, axis=0, weights=[10, 5, 1])
array([2.1875, 3.1875, 4.1875, 5.1875, 6.1875])
np.std(a) # 标准差 
4.320493798938574
np.var(a) # 方差

18.666666666666668

max 求最大值

np.max(a)

14

同理min求最小值

argmin 降成一维后的最小值下标

np.argmin(a)  

0

同理argmax 降成一维后的最大值下标

b = np.arange(15, 0, -1).reshape(3, 5)
b
array([[15, 14, 13, 12, 11],
       [10,  9,  8,  7,  6],
       [ 5,  4,  3,  2,  1]])
np.ptp(b) # 最大值和最小值的差

14

np.median(b) # 中位数

8.0

gradient 求梯度

a = np.random.randint(0, 20, (5))
np.gradient(a)
array([18.,  9., -5., -8., -6.])
c = np.random.randint(0, 50, (3, 5))
np.gradient(c) # 生成两个array 第一个为外层梯度值  第二个为内层梯度值
[array([[ 28. , -10. , -25. , -26. ,  -7. ],
        [ -5. ,   8.5, -10.5,   5.5,  15. ],
        [-38. ,  27. ,   4. ,  37. ,  37. ]]),
 array([[  2. ,   6. ,   7.5,  -6. , -17. ],
        [-36. , -20.5,  -0.5,   3. ,   2. ],
        [ 29. ,   0.5,   4.5,  19.5,   2. ]])]

你可能感兴趣的:(NumPy存取与函数)