face-mask人脸自动加口罩工具

本文应用场景在于疫情期间复工后,检查员工口罩佩戴情况,基于这个安排给我尽可能生成各种角度的戴口罩的人脸图片,还有就是针对百度搜索中人脸关键字段的图片爬取。

本文先简单介绍一下第一个部分的工作,就是测试face-mask的效果,简单介绍一下face-mask是基于dlib和face_recognition两大人脸检测的库实现的人脸关键点检测的方法,由于我远程办公的情况所以就只能在自己的windows笔记本上进行环境的配置,而在配置环境的过程中就不可避免的遇到了dlib库怎么都配置不上,因为face_recognition是依赖于dllib的所以我就开启了探索研究如何在windows+py3.7+dlib的环境配置道路。终于在查阅多篇博客之后最后基于扶封的博客(感谢博主:),需要的同学点击链接即可开启配置dlib之路),得到了配置的方法。

dlib配置好了我们就开始按照要求来配置face-mask的环境了,建议使用pip指令下载,如下:

pip install face-mask

理论上在配置完dlib之后应该是顺风顺水,就可以愉快的跑测试代码了。

代码的主题部分在face_mask文件夹的__main__.py里,其中默认的口罩模板存放路径如下

face-mask人脸自动加口罩工具_第1张图片

在代码目录下的face文件夹放入图片就OK了,最后识别人脸和给人脸加口罩的代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : 2014Vee
import os
import numpy as np
from PIL import Image, ImageFile

__version__ = '0.3.0'


IMAGE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'images')
DEFAULT_IMAGE_PATH = os.path.join(IMAGE_DIR, 'default-mask.png')
BLACK_IMAGE_PATH = os.path.join(IMAGE_DIR, 'black-mask.png')
BLUE_IMAGE_PATH = os.path.join(IMAGE_DIR, 'blue-mask.png')
RED_IMAGE_PATH = os.path.join(IMAGE_DIR, 'red-mask.png')


class FaceMasker:
    KEY_FACIAL_FEATURES = ('nose_bridge', 'chin')

    def __init__(self, face_path, mask_path, show=False, model='hog'):
        self.face_path = face_path
        self.mask_path = mask_path
        self.show = show
        self.model = model
        self._face_img: ImageFile = None
        self._mask_img: ImageFile = None

    def mask(self):
        import face_recognition

        face_image_np = face_recognition.load_image_file(self.face_path)
        face_locations = face_recognition.face_locations(face_image_np, model=self.model)
        face_landmarks = face_recognition.face_landmarks(face_image_np, face_locations)
        self._face_img = Image.fromarray(face_image_np)
        self._mask_img = Image.open(self.mask_path)

        found_face = False
        for face_landmark in face_landmarks:
            # check whether facial features meet requirement
            skip = False
            for facial_feature in self.KEY_FACIAL_FEATURES:
                if facial_feature not in face_landmark:
                    skip = True
                    break
            if skip:
                continue

            # mask face
            found_face = True
            self._mask_face(face_landmark)

        if found_face:
            if self.show:
                self._face_img.show()

            # save
            self._save()
        else:
            print('Found no face.')

    def _mask_face(self, face_landmark: dict):
        nose_bridge = face_landmark['nose_bridge']
        nose_point = nose_bridge[len(nose_bridge) * 1 // 4]
        nose_v = np.array(nose_point)

        chin = face_landmark['chin']
        chin_len = len(chin)
        chin_bottom_point = chin[chin_len // 2]
        chin_bottom_v = np.array(chin_bottom_point)
        chin_left_point = chin[chin_len // 8]
        chin_right_point = chin[chin_len * 7 // 8]

        # split mask and resize
        width = self._mask_img.width
        height = self._mask_img.height
        width_ratio = 1.2
        new_height = int(np.linalg.norm(nose_v - chin_bottom_v))

        # left
        mask_left_img = self._mask_img.crop((0, 0, width // 2, height))
        mask_left_width = self.get_distance_from_point_to_line(chin_left_point, nose_point, chin_bottom_point)
        mask_left_width = int(mask_left_width * width_ratio)
        mask_left_img = mask_left_img.resize((mask_left_width, new_height))

        # right
        mask_right_img = self._mask_img.crop((width // 2, 0, width, height))
        mask_right_width = self.get_distance_from_point_to_line(chin_right_point, nose_point, chin_bottom_point)
        mask_right_width = int(mask_right_width * width_ratio)
        mask_right_img = mask_right_img.resize((mask_right_width, new_height))

        # merge mask
        size = (mask_left_img.width + mask_right_img.width, new_height)
        mask_img = Image.new('RGBA', size)
        mask_img.paste(mask_left_img, (0, 0), mask_left_img)
        mask_img.paste(mask_right_img, (mask_left_img.width, 0), mask_right_img)

        # rotate mask
        angle = np.arctan2(chin_bottom_point[1] - nose_point[1], chin_bottom_point[0] - nose_point[0])
        rotated_mask_img = mask_img.rotate(angle, expand=True)

        # calculate mask location
        center_x = (nose_point[0] + chin_bottom_point[0]) // 2
        center_y = (nose_point[1] + chin_bottom_point[1]) // 2

        offset = mask_img.width // 2 - mask_left_img.width
        radian = angle * np.pi / 180
        box_x = center_x + int(offset * np.cos(radian)) - rotated_mask_img.width // 2
        box_y = center_y + int(offset * np.sin(radian)) - rotated_mask_img.height // 2

        # add mask
        self._face_img.paste(mask_img, (box_x, box_y), mask_img)

    def _save(self):
        path_splits = os.path.splitext(self.face_path)
        new_face_path = path_splits[0] + '-with-mask' + path_splits[1]
        self._face_img.save(new_face_path)
        print(f'Save to {new_face_path}')

    @staticmethod
    def get_distance_from_point_to_line(point, line_point1, line_point2):
        distance = np.abs((line_point2[1] - line_point1[1]) * point[0] +
                          (line_point1[0] - line_point2[0]) * point[1] +
                          (line_point2[0] - line_point1[0]) * line_point1[1] +
                          (line_point1[1] - line_point2[1]) * line_point1[0]) / \
                   np.sqrt((line_point2[1] - line_point1[1]) * (line_point2[1] - line_point1[1]) +
                           (line_point1[0] - line_point2[0]) * (line_point1[0] - line_point2[0]))
        return int(distance)


if __name__ == '__main__':
    FaceMasker("./face/1.jpg", DEFAULT_IMAGE_PATH, True, 'hog').mask()


 

你可能感兴趣的:(传统图像处理)