# -*- coding: utf-8 -*-
"""
Created on Tue May 23 19:17:27 2017
@author: Administrator
"""
import cifar10,cifar10_input
import tensorflow as tf
import numpy as np
import time
max_steps = 3000 #最大训练步数
batch_size = 128
data_dir = '/tmp/cifar10_data/cifar-10-batches-bin'
#权重初始化函数,定义loss,
def variable_with_weight_loss(shape, stddev, w1):
var = tf.Variable(tf.truncated_normal(shape, stddev = stddev)) #均匀分布
if w1 is not None:
weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name = 'weight_loss') #l2正则化乘以loss
tf.add_to_collection('losses', weight_loss)
return var
cifar10.maybe_download_and_extract() #下载并提取数据集,展开至指定位置
images_train,labels_train=cifar10_input.distorted_inputs(data_dir=data_dir,batch_size=batch_size) #产生训练图片和标签数据
images_test, labels_test = cifar10_input.inputs(eval_data = True, data_dir = data_dir, batch_size = batch_size)
#定义placeholder尺寸,图片为24x24,3通道
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])
#第一个卷积层
weight1 = variable_with_weight_loss(shape = [5, 5, 3, 64], stddev = 5e-2, w1 = 0.0) #5x5卷积核,一个64个核,3通道输入
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding = 'SAME') #步长1
bias1 = tf.Variable(tf.constant(0.0, shape = [64]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'SAME') #max_pool窗口3x3,步长2x2
norm1 = tf.nn.lrn(pool1, 4, bias = 1.0, alpha = 0.001 / 9.0, beta = 0.75) #添加lrn处理
#第二个卷积层
weight2 = variable_with_weight_loss(shape = [5, 5, 64, 64], stddev = 5e-2, w1 = 0.0) #5x5卷积核,一个64个核,64输入
kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding = 'SAME')
bias2 = tf.Variable(tf.constant(0.1, shape = [64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias = 1.0, alpha = 0.001 / 9.0, beta = 0.75)
pool2 = tf.nn.max_pool(norm2, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = 'SAME')
#第一个全连接层,384个隐含节点
reshape=tf.reshape(pool2,[batch_size,-1])#全部展开
dim = reshape.get_shape()[1].value
weight3 = variable_with_weight_loss(shape = [dim, 384], stddev = 0.04, w1 = 0.004)
bias3 = tf.Variable(tf.constant(0.1, shape = [384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
#第二全连接层,192个隐含节点
weight4 = variable_with_weight_loss(shape = [384, 192], stddev = 0.04, w1 = 0.004)
bias4 = tf.Variable(tf.constant(0.1, shape = [192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
#最后一层,输出10
weight5 = variable_with_weight_loss(shape = [192, 10], stddev = 1.0 / 192.0, w1 = 0.0)
bias5 = tf.Variable(tf.constant(0.0, shape = [10]))
logits = tf.add(tf.matmul(local4, weight5), bias5)
#定义损失函数,把L2的损失也要加到总的损失中去
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels, name = 'cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name = 'cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name = 'total_loss')
loss=loss(logits,label_holder)
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) #优化损失函数
#使用tf.nn.in_top_k函数求输出结果中top k 的准确率,默认使用top 1,也就是输出分数最高的那一类的准确率。
top_k_op = tf.nn.in_top_k(logits, label_holder, 1)
#模型初始化
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
#启动16个线程
tf.train.start_queue_runners()
#训练步骤
for step in range(max_steps):
start_time = time.time()
image_batch, label_batch = sess.run([images_train, labels_train])
_, loss_value = sess.run([train_op, loss],
feed_dict = {image_holder: image_batch, label_holder: label_batch})
duration = time.time() - start_time
if step % 10 == 0:
examples_per_sec = batch_size / duration
sec_per_batch = float(duration)
format_str = ('step %d, loss = %.2f(%.1f examples/sec; %.3f sec/batch)')
print(format_str % (step, loss_value, examples_per_sec, sec_per_batch))
num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
# print total_sample_count
step = 0
while step < num_iter:
image_batch, label_batch = sess.run([images_test, labels_test])
predictions = sess.run([top_k_op], feed_dict = {image_holder: image_batch, label_holder: label_batch})
true_count += np.sum(predictions)
step += 1
# print(true_count)
precision = true_count / total_sample_count
print('precision @ 1 = %.3f' %precision)
结果