TensorFlow2.0 Keras的cifar10图像分类

from tensorflow.keras.datasets import cifar10
import numpy as np
np.random.seed(10)
(x_img_train, y_label_train), (x_img_test, y_label_test) = cifar10.load_data()
len(x_img_train)
50000
len(x_img_test)
10000
x_img_train.shape
(50000, 32, 32, 3)
x_img_test[0]
array([[[158, 112,  49],
        [159, 111,  47],
        [165, 116,  51],
        ...,
        [137,  95,  36],
        [126,  91,  36],
        [116,  85,  33]],

       [[152, 112,  51],
        [151, 110,  40],
        [159, 114,  45],
        ...,
        [136,  95,  31],
        [125,  91,  32],
        [119,  88,  34]],

       [[151, 110,  47],
        [151, 109,  33],
        [158, 111,  36],
        ...,
        [139,  98,  34],
        [130,  95,  34],
        [120,  89,  33]],

       ...,

       [[ 68, 124, 177],
        [ 42, 100, 148],
        [ 31,  88, 137],
        ...,
        [ 38,  97, 146],
        [ 13,  64, 108],
        [ 40,  85, 127]],

       [[ 61, 116, 168],
        [ 49, 102, 148],
        [ 35,  85, 132],
        ...,
        [ 26,  82, 130],
        [ 29,  82, 126],
        [ 20,  64, 107]],

       [[ 54, 107, 160],
        [ 56, 105, 149],
        [ 45,  89, 132],
        ...,
        [ 24,  77, 124],
        [ 34,  84, 129],
        [ 21,  67, 110]]], dtype=uint8)
label_dict = {
    0: 'airplane',
    1: 'automobile',
    2: 'bird',
    3: 'cat',
    4: 'deer',
    5: 'dog',
    6: 'frog',
    7: 'horse',
    8: 'ship',
    9: 'truck'
}
import matplotlib.pyplot as plt


def show_images_labels_prediction(images, labels, prediction, idx, num=10):
    fig = plt.gcf()
    fig.set_size_inches(12, 14)
    if num > 25: num = 25
    for i in range(0, num):
        ax = plt.subplot(5, 5, i + 1)
        ax.imshow(images[idx], cmap='binary')
        title = str(i) + 'label_dict[labels[i][0]]'
        if len(prediction) > 0:
            title += ',label_dict[prediction[i]]'
        ax.set_title(title, fontsize=10)
        ax.set_xticks([])
        ax.set_yticks([])
        idx += 1
    plt.show()
show_images_labels_prediction(x_img_train, y_label_train, [], 0)

TensorFlow2.0 Keras的cifar10图像分类_第1张图片

# images 预处理
x_img_train[0][0][0]
array([59, 62, 63], dtype=uint8)
x_img_train_normalize = x_img_train.astype('float32') / 255
x_img_test_normalize = x_img_test.astype('float32') / 255
x_img_train_normalize[0][0][0]
array([0.23137255, 0.24313726, 0.24705882], dtype=float32)
y_label_train.shape
(50000, 1)
y_label_train[:5]
array([[6],
       [9],
       [9],
       [4],
       [1]], dtype=uint8)
from tensorflow.keras.utils import to_categorical
y_label_train_Onehot = np_utils.to_categorical(y_label_train)
y_label_test_Onehot = np_utils.to_categorical(y_label_test)
y_label_train_Onehot.shape
(50000, 10)
y_label_train_Onehot[:5]
array([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dropout, Activation, Flatten, Dense
from tensorflow.keras.layers import Conv2D, MaxPool2D, ZeroPadding2D
model = Sequential()
model.add(
    Conv2D(filters=32,
           kernel_size=(3, 3),
           input_shape=(32, 32, 3),
           activation='relu',
           padding='same'))
model.add(Dropout(0.25))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(
    Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(Dropout(0.25))

model.add(MaxPool2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(10, activation='softmax'))
model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_5 (Conv2D)            (None, 32, 32, 32)        896       
_________________________________________________________________
dropout_9 (Dropout)          (None, 32, 32, 32)        0         
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 16, 16, 32)        0         
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 16, 16, 64)        18496     
_________________________________________________________________
dropout_10 (Dropout)         (None, 16, 16, 64)        0         
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 8, 8, 64)          0         
_________________________________________________________________
flatten_3 (Flatten)          (None, 4096)              0         
_________________________________________________________________
dropout_11 (Dropout)         (None, 4096)              0         
_________________________________________________________________
dense_5 (Dense)              (None, 1024)              4195328   
_________________________________________________________________
dropout_12 (Dropout)         (None, 1024)              0         
_________________________________________________________________
dense_6 (Dense)              (None, 10)                10250     
=================================================================
Total params: 4,224,970
Trainable params: 4,224,970
Non-trainable params: 0
_________________________________________________________________
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
train_history = model.fit(x_img_train_normalize,
                          y_label_train_Onehot,
                          validation_split=0.2,
                          epochs=10,
                          batch_size=128,
                          verbose=1)
W0815 14:02:18.266812  3476 deprecation.py:323] From E:\Anaconda3\envs\ml\lib\site-packages\tensorflow\python\ops\math_grad.py:1250: add_dispatch_support..wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where


Train on 40000 samples, validate on 10000 samples
Epoch 1/10
40000/40000 [==============================] - 80s 2ms/step - loss: 1.4861 - acc: 0.4651 - val_loss: 1.2726 - val_acc: 0.5727
Epoch 2/10
40000/40000 [==============================] - 78s 2ms/step - loss: 1.1343 - acc: 0.5957 - val_loss: 1.1271 - val_acc: 0.6321
Epoch 3/10
40000/40000 [==============================] - 78s 2ms/step - loss: 0.9794 - acc: 0.6547 - val_loss: 1.0180 - val_acc: 0.6591
Epoch 4/10
40000/40000 [==============================] - 79s 2ms/step - loss: 0.8696 - acc: 0.6945 - val_loss: 0.9446 - val_acc: 0.6983
Epoch 5/10
40000/40000 [==============================] - 79s 2ms/step - loss: 0.7815 - acc: 0.7254 - val_loss: 0.8846 - val_acc: 0.6979
Epoch 6/10
40000/40000 [==============================] - 79s 2ms/step - loss: 0.6987 - acc: 0.7541 - val_loss: 0.8430 - val_acc: 0.7234
Epoch 7/10
40000/40000 [==============================] - 80s 2ms/step - loss: 0.6221 - acc: 0.7812 - val_loss: 0.8249 - val_acc: 0.7241
Epoch 8/10
40000/40000 [==============================] - 78s 2ms/step - loss: 0.5540 - acc: 0.8058 - val_loss: 0.7874 - val_acc: 0.7359
Epoch 9/10
40000/40000 [==============================] - 79s 2ms/step - loss: 0.4923 - acc: 0.8278 - val_loss: 0.7541 - val_acc: 0.7458
Epoch 10/10
40000/40000 [==============================] - 78s 2ms/step - loss: 0.4360 - acc: 0.8477 - val_loss: 0.7844 - val_acc: 0.7289
def show_train_hitory(train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train_History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
show_train_hitory('acc', 'val_acc')

TensorFlow2.0 Keras的cifar10图像分类_第2张图片

show_train_hitory('loss', 'val_loss')

TensorFlow2.0 Keras的cifar10图像分类_第3张图片

scores = model.evaluate(x_img_test_normalize, y_label_test_Onehot, verbose=0)
scores[1]
0.7243
prediction = model.predict_classes(x_img_test_normalize)
prediction[:10]
array([3, 8, 8, 0, 6, 6, 1, 6, 3, 1], dtype=int64)
show_images_labels_prediction(x_img_test, y_label_test, prediction, 0, 10)

TensorFlow2.0 Keras的cifar10图像分类_第4张图片

predicted_Probability = model.predict(x_img_test_normalize)
def show_Predicted_Probability(y, prediction, x_img, Predicted_Probability, i):
    print('label:', label_dict[y[i][0]], 'predict', label_dict[prediction[i]])
    plt.figure(figsize=(2, 2))
    plt.imshow(np.reshape(x_img_test[i], (32, 32, 3)))
    plt.show()
    for j in range(10):
        print(label_dict[j] + 'Probability: % 1.9f' %
              (Predicted_Probability[i][j]))
show_Predicted_Probability(y_label_test, prediction, x_img_test,
                           predicted_Probability, 0)
label: cat predict cat

TensorFlow2.0 Keras的cifar10图像分类_第5张图片

airplaneProbability:  0.006167101
automobileProbability:  0.001565425
birdProbability:  0.044187795
catProbability:  0.715321243
deerProbability:  0.014729370
dogProbability:  0.098865360
frogProbability:  0.068471827
horseProbability:  0.006407721
shipProbability:  0.043457642
truckProbability:  0.000826489
show_Predicted_Probability(y_label_test, prediction, x_img_test,
                           predicted_Probability, 3)
label: airplane predict airplane

TensorFlow2.0 Keras的cifar10图像分类_第6张图片

airplaneProbability:  0.840534329
automobileProbability:  0.001597346
birdProbability:  0.083605878
catProbability:  0.000940685
deerProbability:  0.008222473
dogProbability:  0.000034206
frogProbability:  0.000021479
horseProbability:  0.000218752
shipProbability:  0.064438224
truckProbability:  0.000386720
import pandas as pd
pd.crosstab(y_label_test.reshape(-1),
            prediction,
            rownames=['label'],
            colnames=['predict'])
E:\Anaconda3\envs\ml\lib\importlib\_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject
  return f(*args, **kwds)
predict 0 1 2 3 4 5 6 7 8 9
label
0 791 6 85 8 28 3 15 6 46 12
1 35 752 29 11 14 4 20 2 58 75
2 49 2 696 25 101 37 65 16 8 1
3 23 5 133 427 91 159 122 26 8 6
4 16 0 97 21 759 23 54 22 8 0
5 9 4 98 109 63 627 49 33 5 3
6 3 2 44 20 30 15 881 0 5 0
7 13 1 63 19 90 73 9 725 6 1
8 59 16 32 7 15 7 11 2 837 14
9 63 64 27 11 7 13 17 19 31 748

你可能感兴趣的:(TensorFlow)