Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
本题解法为递归解法,动态规划解法没有掌握。
递归的思路和遍历字符串,分割成两部分,对比两部分是否能scramble,不过本题要比较前前和前后两次。
具体代码如下:
public class Solution {
public boolean isScramble(String s1, String s2) {
/**
* 思想是递归,将字符串逐个的分为两串
* 然后让两串的前前比较、后后比较,是则返回true
* 不是着前后比较,是则返回true
* 如果还不是,则切割的字符串位置+1
*/
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
//调用函数判断
if(isScr(c1, c2, 0, c1.length, 0, c2.length)){
return true;
}
return false;
}
boolean isScr(char[] c1,char[] c2,int start1,int end1,int start2, int end2){
//判断字符是否为空
if(end1 - start1 <= 0 && end2 - start2 <= 0){
return true;
}
//如果长度为1,则必须相等
if(end1 - start1 == 1 && end2 - start2 == 1){
return c1[start1] == c2[start2];
}
//长度不等返回false
if( end1 - start1 != end2 - start2){
return false;
}
int[] a = new int[128];
//每个字符串的字符必须个数相等
for(int i = 0; i < end1 - start1; i++){
a[c1[i+start1]]++;
a[c2[i+start2]]--;
}
//不相等返回false
for(int i = 0; i < a.length; i++){
if(a[i] != 0){
return false;
}
}
//递归实现
for(int i = 1; i < end1 - start1; i++){
if(isScr(c1, c2, start1, start1+i, start2, start2+i) && isScr(c1, c2, start1+i, end1, start2+i, end2)){
return true;
}
if((isScr(c1, c2, start1, start1+i, end2-i, end2) && isScr(c1, c2, start1+i, end1, start2, end2-i))){
return true;
}
}
return false;
}
}