k8s集群监控组件容器化部署prometheus+grafana+node-exporter

环境准备

单节点k8s集群

节点 IP地址 版本信息
master 192.168.1.4 k8s=v1.17.1、docker=v19.03
node 192.168.1.5 k8s=v1.17.1、docker=v19.03

镜像文件准备

prom/prometheus:v2.19.1
grafana/grafana:7.0.5
prom/node-exporter:v2.0.0

镜像tar包百度网盘分享:

链接:https://pan.baidu.com/s/1xZs-jbBUdG1EJ4rBqHwI_Q 
提取码:2hoq

部署node-exporter

部署前创建monitoring名称空间

kubectl create namespace monitoring

node-exporter组件采用ds方式部署
node-exporter-ds.yaml

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitoring
  labels:
    app: node-exporter
spec:
  selector:
    matchLabels:
      app: node-exporter
  template:
    metadata:
      labels:
        app: node-exporter
    spec:
      containers:
      - image: prom/node-exporter:v2.0.0
        name: node-exporter
        ports:
        - containerPort: 9100
      hostNetwork: true
      tolerations:
      - operator: Exists

node-exporter-svc.yaml

apiVersion: v1
kind: Service
metadata:
  labels:
    app: node-exporter
  name: node-exporter
  namespace: monitoring
spec:
  clusterIP: None
  ports:
  - name: metrics
    port: 9100
    protocol: TCP
    targetPort: 9100
  type: ClusterIP
  selector:
    app: node-exporter

创建ds和svc

kubectl create -f node-exporter-ds.yaml
kubectl create -f node-exporter-svc.yaml

部署prometheus组件

我这里创建了个/tsdb目录本地存储prometheus和grafana数据

mkdir /tsdb

prometheus-clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/proxy
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups:
  - extensions
  resources:
  - ingresses
  verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]

prometheus-sa.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: monitoring

prometheus-clusterrolebinding.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: monitoring

kubectl create -f  prometheus-clusterrole.yaml
kubectl create -f  prometheus-sa.yaml
kubectl create -f  prometheus-clusterrolebinding.yaml

采用configmap方式管理prometheus组件的配置文件

confimap可以配置想要采集的数据
global:
#全局配置
  scrape_interval: 30s
  #默认抓取周期,可用单位ms、smhdwy  默认值为1m
  scrape_timeout: 30s
  #默认抓取超时   默认值为10s
  evaluation_interval: 1m
  #估算规则的默认周期默认为1m
scrape_configs:
#抓取配置列表,及定义收集规则
- job_name: 'prometheus'
  static_configs:  #静态配置参数
    -  targets: {'localhost:9090'} #指定抓取对象IP+端口  未配置metrics_path访问路径都默认为/metrics
    #prometheus会定期的从targets中拉取时序数据存储到本地的时序数据库TSDB中

- job_name: "kubernetes-pods"
  kubernetes_sd_configs:
  - role: pod
  #kubernetes_sd_configs是以角色(role)来定义收集的,可配置node、pod、endpoints、ingress等
    # api_server: 
    # basic_auth: XXX
    # tls_config: XXX
  relabel_configs:
  #允许在抓取之前对任何目标及其标签进行修改  标签修改规则  
  - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_namespace]
  #pod所在的namespaces
    action: replace   #更换__meta_kubernetes_namespace为kubernetes_namespace显示
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_pod_name] 
  #资源标签pod名称
    action: replace  #更换pod名称__meta_kubernetes_pod_name为kubernetes_pod_name显示
    target_label: kubernetes_pod_name
- job_name: 'kube-controller-manager'
  scrape_interval: 1m
  scrape_timeout: 1m
  metrics_path: "/metrics"
  static_configs:
    -  targets: ['192.168.1.4:10252']
- job_name: 'kube-service-endpoints'
  kubernetes_sd_configs:
  - role: endpoints
  relabel_configs:
  - source_labels: [__meta_kubernetes_service_annotation_test_io_must_be_scraped]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_service_annotation_test_io_metrics_path]
    action: replace
    target_label: __metrics_path
    regex: (.+)
  - source_labels: [__meta_kubernetes_service_annotation_test_io_scrape_port]
    action: replace
    regex: ([^:]+)(?::\d+)?;(\d+)
    replacement: $1:$2
    target_label: __address__
  - source_labels: [__meta_kubernetes_namespace]
    action: replace
    target_label: kubernetes_namespaces
  - source_labels: [__meta_kubernetes_service_name]
    action: replace
    target_label: kubernetes_name
  - source_labels: [__meta_kubernetes_pod_host_ip]
    action: replace
    target_label: host_ip
- job_name: 'kube-etcd'
  scheme: https
  tls_config:
    ca_file: /etc/kubernetes/pki/etcd/ca.crt
    cert_file: /etc/kubernetes/pki/etcd/peer.crt
    key_file: /etc/kubernetes/pki/etcd/peer.key
  static_configs:
    -  targets: ['192.168.1.4:2379']

prometheus采用deployment方式部署

apiVersion: apps/v1
kind: DaemonSet
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      hostNetwork: true
      nodeSelector:
        monitoring: prometheus
      tolerations:
      - operator: Exists
      containers:
      - image: prom/prometheus:v2.19.1
        name: prometheus
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        ports:
        - containerPort: 9090
          hostPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: "/prometheus"
          name: prometheus-data
        - mountPath: "/etc/prometheus"
          name: prometheus-config-volume
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
          limits:
            cpu: 500m
            memory: 2500Mi
      serviceAccountName: prometheus    
      volumes:
      - hostPath:
          path: /tsdb/prometheus
          type: DirectoryOrCreate
        name: prometheus-data
      - configMap:
          defaultMode: 420
          name: prometheus-server-conf
        name: prometheus-config-volume 

创建prometheus-svc.yaml

kind: Service
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: monitoring
spec:
  type: ClusterIP
  ports:
  - port: 9090
    protocol: TCP
    targetPort: 9090
  selector:
    app: prometheus

部署keepalived+haproxy采用vip代理后端两个prometheus服务实现高可用

yum install -y keepalived
yum install -y haproxy
keepalived配置文件解析
master主机配置   vi /etc/keepalived/keepalived.conf
----------------
global_defs{   #全局配置
lvs_id haproxy_DH
}
vrrp_script check_haproxy { #定义用于实例执行的脚本内容 可以设置优先级来强制切换
script "killall -0 haproxy"#向haproxy发送0查看返回值来判断haproxy进程是否存在 返回0表示存在否则表示不存在
interval 2 # 脚本执行间隔
weight 2 # 脚本结果导致的优先级变更
}
#上面类似定义了一个方法在下面的main函数中引用
vrrp_instance VI_01{ #定义一个实例  类似一个路由器
state MASTER #初始状态  可以是master和backup
interface ens33 #使用那个接口进行
virtual_router_id 51 # 虚拟路由ID,同一组虚拟路由就定义一个ID 取值范围0-255
priority 101 #优先级设置  如果为master就要高于其他的
virtual_ipaddress{#设置虚拟vip地址
192.168.1.232/24
}
track_script {#执行上面定义的脚本
check_haproxy
}
}

node节点keepalived配置
global_defs {
lvs_id haproxy_DH
}
vrrp_script check_haproxy {
script "killall -0 haproxy"
interval 2
weight 2
}

vrrp_instance VI_01 {
state MASTER
interface ens33
virtual_router_id 51
priority 101
virtual_ipaddress {
192.168.1.232/24
}
track_script {
check_haproxy
}
}

修改完成后重启keepalived服务

systemctl restart keepalived
重启后查看服务状态
systemctl status keepalived

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第1张图片

haproxy配置解析

global
    log         127.0.0.1 local2  #定义全局的syslog服务器,最多可定义两个

    chroot      /var/lib/haproxy #修改haproxy的工作目录至指定的目录并在放弃权限之前执行chroot()操作
    pidfile     /var/run/haproxy.pid
    maxconn     4000  #设定每个haproxy进程所接受的最大并发连接数
    user        haproxy #以指定用户运行haproxy进程
    group       haproxy #同上指定组名
    daemon  #让haproxy以守护进程的方式工作于后台

    stats socket /var/lib/haproxy/stats   #用户访问统计数据的接口

defaults   #为所有其它配置段提供默认参数,这配置默认配置参数可由下一个“defaults”所重新设定。
    mode                    http
    #设定实例的运行模式或协议。当实现内容交换时,前端和后端必须工作于同一种模式(默认是HTTP模式),否则将无法启动实例
    log                     global
    #设置当前实例的日志系统参数同”global”段中的定义
    option                  httplog 
    #启用记录HTTP请求、会话状态和计时器的功能。
    option                  dontlognull 
    option http-server-close
    option forwardfor       except 127.0.0.0/8#向每个发往服务器的请求添加此首部 以客户端ip为value
    option                  redispatch
    retries                 3
    timeout http-request    10s  #在客户端建立连接但不请求数据,关闭客户端连接
    timeout queue           1m  #等待最大时长
    timeout connect         10s #定义haproxy将客户端请求转发到后端服务所等待的超时时长
    timeout client          1m  #客户端非活动状态的超时时长
    timeout server          1m  #客户端与服务端建立连接  等待服务端的超时时长
    timeout http-keep-alive 10s #定义保持连接的超时时长
    timeout check           10s #健康检测的超时时长  过短可能误判  过长可能造成资源消耗
    maxconn                 3000 #设定每个haproxy进程所接受的最大并发连接数

frontend  main *:5000 #"frontend"段用于定义一系列监听套接字 这些套接字可接受客户端请求并与之建立连接
    acl url_static       path_beg       -i /static /images /javascript /stylesheets
    acl url_static       path_end       -i .jpg .gif .png .css .js

    use_backend static          if url_static
    default_backend             app  #没有被规则匹配到的请求将由 backend app 后端接收

backend static
    balance     roundrobin
    server      static 127.0.0.1:4331 check
backend app
    balance     roundrobin
    server  app1 127.0.0.1:5001 check
    #为后端声明一个server,app1为服务器指定的内部名称 127.0.0.1表示此服务器的IPV4地址 :5001指定将连接请求所发往的此服务器的目标端口,未设定将使用客户端请求的同端口,check表示启动对此server的健康检查。
    server  app2 127.0.0.1:5002 check
    server  app3 127.0.0.1:5003 check
    server  app4 127.0.0.1:5004 check
listen prometheus_server
  bind 0.0.0.0:30003  #监听当前系统的所有IPV4地址:30003
  balance roundrobin  #定义负载均衡算法 roundrobin表示基于权重进行伦叫,在服务器的处理时间保持均匀分布时,这是最平衡的算法。
  mode tcp  #设定实例运行于TCP模式
  option tcp-check  
  server pr-1 192.168.1.4:9090 check port 9090 inter 2000 fall 3 rise 3 on-marked-down shutdown-sessions
  server pr-2 192.168.1.5:9090 check port 9090 inter 2000 fall 3 rise 3 on-marked-down shutdown-sessions
  # inter 2000 设定健康检查的时间间隔默认为2000ms  fall 3表示健康检查三次失败后将其标记为不可用状态,rise 3 表示离线server从离线状态转换为正常状态需要成功检查的次数

node节点配置和master节点相同即可

kind: Service
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: monitoring
spec:
  type: ClusterIP
  ports:
  - port: 9090
    protocol: TCP
    targetPort: 9090
  selector:
    app: prometheus
[root@master prometheus]# cd /etc/keepalived/
[root@master keepalived]# ls
keepalived.conf
[root@master keepalived]# cat /etc/haproxy/haproxy.cfg
global
    log         127.0.0.1 local2

    chroot      /var/lib/haproxy
    pidfile     /var/run/haproxy.pid
    maxconn     4000
    user        haproxy
    group       haproxy
    daemon

    stats socket /var/lib/haproxy/stats

defaults
    mode                    http
    log                     global
    option                  httplog
    option                  dontlognull
    option http-server-close
    option forwardfor       except 127.0.0.0/8
    option                  redispatch
    retries                 3
    timeout http-request    10s
    timeout queue           1m
    timeout connect         10s
    timeout client          1m
    timeout server          1m
    timeout http-keep-alive 10s
    timeout check           10s
    maxconn                 3000

frontend  main *:5000
    acl url_static       path_beg       -i /static /images /javascript /stylesheets
    acl url_static       path_end       -i .jpg .gif .png .css .js

    use_backend static          if url_static
    default_backend             app

backend static
    balance     roundrobin
    server      static 127.0.0.1:4331 check
backend app
    balance     roundrobin
    server  app1 127.0.0.1:5001 check
    server  app2 127.0.0.1:5002 check
    server  app3 127.0.0.1:5003 check
    server  app4 127.0.0.1:5004 check
listen prometheus_server
  bind 0.0.0.0:30003
  balance roundrobin
  mode tcp
  option tcp-check
  server pr-1 192.168.1.4:9090 check port 9090 inter 2000 fall 3 rise 3 on-marked-down shutdown-sessions
  server pr-2 192.168.1.5:9090 check port 9090 inter 2000 fall 3 rise 3 on-marked-down shutdown-sessions

配置修改后重启haproxy服务

systemctl restart haproxy
查看haproxy服务状态
systemctl status haproxy

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第2张图片

这里可以测试使用vip+端口访问prometheus

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第3张图片

部署grafana展示prometheus数据

grafana-deploy.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana-core
  namespace: monitoring
  labels:
    app: grafana
spec:
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
    spec:
      nodeSelector:
        app: grafana
      hostNetwork: true
      containers:
      - image: grafana/grafana:7.0.5
        name: grafana
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 100m
            memory: 100Mi
          requests:
            cpu: 100m
            memory: 100Mi
        env:
          - name: GF_AUTH_BASIC_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "false"
        readinessProbe:
          httpGet:
            path: /login
            port: 3000
        volumeMounts:
        - name: grafana-data
          mountPath: /var/lib/grafana
        - name: localtime
          mountPath: /etc/localtime
      volumes:
      - hostPath:
          path: /tsdb/grafana
          type: DirectoryOrCreate
        name: grafana-data
      - hostPath:
          path: /etc/localtime
          type: ""
        name: localtime

kubectl create -f  grafana-deploy.yaml

这里部署在node节点,通过label来选择

kubectl label no app=grafana

配置haproxy将grafana服务代理出去
master和node节点均修改haproxy配置
vi /etc/haproxy/haproxy.cfg
在末尾加 加完重启下haproxy服务

listen grafana
  bind 0.0.0.0:30004
  balance roundrobin
  mode tcp
  option tcp-check
  server pr-1 192.168.1.5:3000 check port 3000 inter 2000 fall 3 rise 3 on-marked-down shutdown-sessions

测试用VIP访问grafana服务
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第4张图片

grafana初始用户名密码均为:admin

接下来就可以配置展示面板了

首先添加数据源

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第5张图片
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第6张图片
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第7张图片
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第8张图片

下拉选择save&test即可

简单配置一个面板

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第9张图片

选择刚刚配置的数据源

k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第10张图片
metrics写prometheus查询语句
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第11张图片
选择合适的面板来展示数据
k8s集群监控组件容器化部署prometheus+grafana+node-exporter_第12张图片

百度网盘分享中有几个面板插件 可以下载解压到主机的grafana目录的plugins目录下,重启grafana即可

在这里插入图片描述

你可能感兴趣的:(kubernetes集群部署)