9、TensorBoard可视化

TensorFlow 提供了一个可视化工具 TensorBoard。他可以将训练过程的各种回执数据展示出来,包括标量(scalars),图片(images),音频(Audio),计算图(graph),数据分布,直方图(histograms)和嵌入式向量。、。通过网页来观察模型的结构和训练过程中各个参数的变化。TensorBoard 是日志展示系统,需要在 session 中运算图时,将各种类型的数据汇总并输出到日志文件中。然后启动 TensorBoard 服务,TensorBoard读取这些日志文件,并开启 6060 端口提供 Web 服务,让用户可以在浏览器中查看数据。

tf.summary有诸多函数:

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 

例如: tf.summary.histogram('histogram', var)

一般用来显示训练过程中变量的分布情况

3、tf.summary.distribution

分布图,一般用于显示weights分布

4、tf.summary.text

可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。

格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio

展示训练过程中记录的音频 

7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

复制代码

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge_all()  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存  

复制代码

此时开启tensorborad:

  1. tensorboard --logdir=/summary_dir 

便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

复制代码

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存  

复制代码

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES  是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)])  #这里的[]不可省

 如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。

10、summary_writer.add_summary

add_summary仅仅是向FileWriter对象的缓存中存放event data。而向disk上写数据是由FileWrite对象控制的

用例:

add_summary(train_summary,step)

其中train_summary为merge_summary会话生成

使用的时候需要注意的地方: 
1、 如果使用filewriter.add_summary(summary, global_step)时没有传global_step参数,会使scarlar_summary变成一条直线。

2、只要是在计算图上的Summary op,都会被merge_all捕捉到,不需要考虑变量生存空间问题!

3、如果执行一次,disk上没有保存Summary数据的话,可以尝试下filewriter.flush()

下面为线性回归的一个例子

 

1 import tensorflow as tf
  2 import numpy as np
  3 import matplotlib.pyplot as plt
  4 
  5 plotdata={"batchsize":[],"loss":[]}
  6 def moving_average(a,w=10):
  7     if len(a)

运行代码,同时启动tensorboard:

在端口6007里打开浏览器,可以查看代价函数数值变化情况等图示9、TensorBoard可视化_第1张图片

 

你可能感兴趣的:(TensorFlow)