ELF(Executable and Linking Format)是一个定义了目标文件内部信息如何组成和组织的文件格式。
内核会根据这些信息加载可执行文件,内核根据这些信息可以知道从文件哪里获取代码,从哪里获取初始化数据,在哪里应该加载共享库等信息。
栈的地址是向下生长,堆的地址是向上生长:
1、ELF 文件类型
ELF 文件有下面三种类型:
1)目标文件
$ gcc -c test.c
得到的test.o就是目标文件,目标文件通过链接可生成可执行文件。
静态库其实也算目标文件,静态库是通过ar命令将目标打包为.a文件。
如:ar crv libtest.a test.o
2)可执行文件
$gcc -o test test.c
得到的 test 文件就是可执行的二进制文件。
3)共享库
$ gcc test.c -fPIC -shared -o libtest.so
得到的文件 listtest.so 就是共享库。
可以通过 readelf 来区分上面三种类型的 ELF 文件,每种类型文件的头部信息是不一样的。
2、示例
2.1、test.c 文件
#include
int global_data = 4;
int global_data_2;
int main(int argc, char **argv)
{
int local_data = 3;
printf("Hello World\n");
printf("global_data = %d\n", global_data);
printf("global_data_2 = %d\n", global_data_2);
printf("local_data = %d\n", local_data);
return (0);
}
2.2、目标文件:$readelf -h test.o
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: REL (Relocatable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x0
Start of program headers: 0 (bytes into file)
Start of section headers: 456 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 0 (bytes)
Number of program headers: 0
Size of section headers: 64 (bytes)
Number of section headers: 13
Section header string table index: 10
在 readelf 的输出中:
第 1 行,ELF Header: 指名 ELF 文件头开始。
第 2 行,Magic 魔数,用来指名该文件是一个 ELF 目标文件。第一个字节 7F 是个固定的数;后面的 3 个字节正是 E, L, F 三个字母的 ASCII 形式。
第 3 行,CLASS 表示文件类型,这里是 64位的 ELF 格式。
第 4 行,Data 表示文件中的数据是按照什么格式组织(大端或小端)的,不同处理器平台数据组织格式可能就不同,如x86平台为小端存储格式。
第 5 行,当前 ELF 文件头版本号,这里版本号为 1 。
第 6 行,OS/ABI ,指出操作系统类型,ABI 是 Application Binary Interface 的缩写。
第 7 行,ABI 版本号,当前为 0 。
第 8 行,Type 表示文件类型。ELF 文件有 3 种类型,一种是如上所示的 Relocatable file 可重定位目标文件,一种是可执行文件(Executable),另外一种是共享库(Shared Library) 。
第 9 行,机器平台类型。
第 10 行,当前目标文件的版本号。
第 11 行,程序的虚拟地址入口点,因为这还不是可运行的程序,故而这里为零。
第 12 行,与 11 行同理,这个目标文件没有 Program Headers。
第 13 行,sections 头开始处,这里 208 是十进制,表示从地址偏移 0xD0 处开始。
第 14 行,是一个与处理器相关联的标志,x86 平台上该处为 0 。
第 15 行,ELF 文件头的字节数。
第 16 行,因为这个不是可执行程序,故此处大小为 0。
第 17 行,同理于第 16 行。
第 18 行,sections header 的大小,这里每个 section 头大小为 40 个字节。
第 19 行,一共有多少个 section 头,这里是 8 个。
第 20 行,section 头字符串表索引号,从 Section Headers 输出部分可以看到其内容的偏移在 0xa0 处,从此处开始到0xcf 结束保存着各个 sections 的名字,如 .data,.text,.bss等。
2.3、可执行文件:$readelf -h test
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x400420
Start of program headers: 64 (bytes into file)
Start of section headers: 2696 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 8
Size of section headers: 64 (bytes)
Number of section headers: 30
Section header string table index: 27
2.3.1、信息详解
1) 根据 Class、Type 和 Machine,可以知道该文件在 X86-64 位机器上生成的 64 位可执行文件;
2) 根据 Entry point address,可以知道当该程序启动时从虚拟地址 0x400420 处开始运行。
这个地址并不是 main 函数的地址,而是 _start 函数的地址,_start 由链接器创建,_start 是为了初始化程序。
通过这个命令可以看到 _start 函数:
objdump -d -j .text test
3) 根据Number of program headers,可以知道该程序有8个段。
4) 根据Number of section headers,可以知道该程序有30个区。
区中存储的信息是用来链接使用的,主要包括:程序代码、程序数据(变量)、重定向信息等。
比如:Code section 保存的是代码,data section 保存的是初始化或未初始化的数据等。
Linux内核无法以区的概念来识别可执行文件。
内核使用包括连续页的VMA(virtual memory area)来识别进程。
在每个VMA中可能映射了一个或多个区,每个VMA代表一个ELF文件的段。
2.3.2、查看区的内容
$readelf -S test
There are 30 section headers, starting at offset 0xa88:
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .interp PROGBITS 0000000000400200 00000200
000000000000001c 0000000000000000 A 0 0 1
[ 2] .note.ABI-tag NOTE 000000000040021c 0000021c
0000000000000020 0000000000000000 A 0 0 4
[ 3] .note.gnu.build-i NOTE 000000000040023c 0000023c
0000000000000024 0000000000000000 A 0 0 4
[ 4] .gnu.hash GNU_HASH 0000000000400260 00000260
000000000000001c 0000000000000000 A 5 0 8
[ 5] .dynsym DYNSYM 0000000000400280 00000280
0000000000000078 0000000000000018 A 6 1 8
[ 6] .dynstr STRTAB 00000000004002f8 000002f8
0000000000000044 0000000000000000 A 0 0 1
[ 7] .gnu.version VERSYM 000000000040033c 0000033c
000000000000000a 0000000000000002 A 5 0 2
[ 8] .gnu.version_r VERNEED 0000000000400348 00000348
0000000000000020 0000000000000000 A 6 1 8
[ 9] .rela.dyn RELA 0000000000400368 00000368
0000000000000018 0000000000000018 A 5 0 8
[10] .rela.plt RELA 0000000000400380 00000380
0000000000000048 0000000000000018 A 5 12 8
[11] .init PROGBITS 00000000004003c8 000003c8
0000000000000018 0000000000000000 AX 0 0 4
[12] .plt PROGBITS 00000000004003e0 000003e0
0000000000000040 0000000000000010 AX 0 0 4
[13] .text PROGBITS 0000000000400420 00000420
0000000000000238 0000000000000000 AX 0 0 16
[14] .fini PROGBITS 0000000000400658 00000658
000000000000000e 0000000000000000 AX 0 0 4
[15] .rodata PROGBITS 0000000000400668 00000668
0000000000000053 0000000000000000 A 0 0 8
[16] .eh_frame_hdr PROGBITS 00000000004006bc 000006bc
0000000000000024 0000000000000000 A 0 0 4
[17] .eh_frame PROGBITS 00000000004006e0 000006e0
000000000000007c 0000000000000000 A 0 0 8
[18] .ctors PROGBITS 0000000000600760 00000760
0000000000000010 0000000000000000 WA 0 0 8
[19] .dtors PROGBITS 0000000000600770 00000770
0000000000000010 0000000000000000 WA 0 0 8
[20] .jcr PROGBITS 0000000000600780 00000780
0000000000000008 0000000000000000 WA 0 0 8
[21] .dynamic DYNAMIC 0000000000600788 00000788
0000000000000190 0000000000000010 WA 6 0 8
[22] .got PROGBITS 0000000000600918 00000918
0000000000000008 0000000000000008 WA 0 0 8
[23] .got.plt PROGBITS 0000000000600920 00000920
0000000000000030 0000000000000008 WA 0 0 8
[24] .data PROGBITS 0000000000600950 00000950
0000000000000008 0000000000000000 WA 0 0 4
[25] .bss NOBITS 0000000000600958 00000958
0000000000000018 0000000000000000 WA 0 0 8
[26] .comment PROGBITS 0000000000000000 00000958
000000000000002c 0000000000000001 MS 0 0 1
[27] .shstrtab STRTAB 0000000000000000 00000984
00000000000000fe 0000000000000000 0 0 1
[28] .symtab SYMTAB 0000000000000000 00001208
0000000000000648 0000000000000018 29 46 8
[29] .strtab STRTAB 0000000000000000 00001850
000000000000021e 0000000000000000 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)
.text 区存储的是程序的代码(二进制指令),该区的标志为 X 表示可执行。
2.3.3、使用 objdump 反汇编查看 .text 的内容
$objdump -d -j .text test
-d选项告诉objdump反汇编机器码,-j选项告诉objdump只关心.text区。
test: file format elf64-x86-64
Disassembly of section .text:
0000000000400420 <_start>:
400420: 31 ed xor %ebp,%ebp
400422: 49 89 d1 mov %rdx,%r9
400425: 5e pop %rsi
400426: 48 89 e2 mov %rsp,%rdx
400429: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp
40042d: 50 push %rax
40042e: 54 push %rsp
40042f: 49 c7 c0 80 05 40 00 mov $0x400580,%r8
400436: 48 c7 c1 90 05 40 00 mov $0x400590,%rcx
40043d: 48 c7 c7 04 05 40 00 mov $0x400504,%rdi
400444: e8 c7 ff ff ff callq 400410 <__libc_start_main@plt>
400449: f4 hlt
40044a: 90 nop
40044b: 90 nop
000000000040044c :
40044c: 48 83 ec 08 sub $0x8,%rsp
400450: 48 8b 05 c1 04 20 00 mov 0x2004c1(%rip),%rax # 600918 <_DYNAMIC+0x190>
400457: 48 85 c0 test %rax,%rax
40045a: 74 02 je 40045e
40045c: ff d0 callq *%rax
40045e: 48 83 c4 08 add $0x8,%rsp
400462: c3 retq
400463: 90 nop
400464: 90 nop
400465: 90 nop
400466: 90 nop
400467: 90 nop
400468: 90 nop
400469: 90 nop
40046a: 90 nop
40046b: 90 nop
40046c: 90 nop
40046d: 90 nop
40046e: 90 nop
40046f: 90 nop
0000000000400470 <__do_global_dtors_aux>:
400470: 55 push %rbp
400471: 48 89 e5 mov %rsp,%rbp
400474: 53 push %rbx
400475: 48 83 ec 08 sub $0x8,%rsp
400479: 80 3d d8 04 20 00 00 cmpb $0x0,0x2004d8(%rip) # 600958 <__bss_start>
400480: 75 4b jne 4004cd <__do_global_dtors_aux+0x5d>
400482: bb 78 07 60 00 mov $0x600778,%ebx
400487: 48 8b 05 d2 04 20 00 mov 0x2004d2(%rip),%rax # 600960
40048e: 48 81 eb 70 07 60 00 sub $0x600770,%rbx
400495: 48 c1 fb 03 sar $0x3,%rbx
400499: 48 83 eb 01 sub $0x1,%rbx
40049d: 48 39 d8 cmp %rbx,%rax
4004a0: 73 24 jae 4004c6 <__do_global_dtors_aux+0x56>
4004a2: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)
4004a8: 48 83 c0 01 add $0x1,%rax
4004ac: 48 89 05 ad 04 20 00 mov %rax,0x2004ad(%rip) # 600960
4004b3: ff 14 c5 70 07 60 00 callq *0x600770(,%rax,8)
4004ba: 48 8b 05 9f 04 20 00 mov 0x20049f(%rip),%rax # 600960
4004c1: 48 39 d8 cmp %rbx,%rax
4004c4: 72 e2 jb 4004a8 <__do_global_dtors_aux+0x38>
4004c6: c6 05 8b 04 20 00 01 movb $0x1,0x20048b(%rip) # 600958 <__bss_start>
4004cd: 48 83 c4 08 add $0x8,%rsp
4004d1: 5b pop %rbx
4004d2: c9 leaveq
4004d3: c3 retq
4004d4: 66 66 66 2e 0f 1f 84 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4004db: 00 00 00 00 00
00000000004004e0 :
4004e0: 48 83 3d 98 02 20 00 cmpq $0x0,0x200298(%rip) # 600780 <__JCR_END__>
4004e7: 00
4004e8: 55 push %rbp
4004e9: 48 89 e5 mov %rsp,%rbp
4004ec: 74 12 je 400500
4004ee: b8 00 00 00 00 mov $0x0,%eax
4004f3: 48 85 c0 test %rax,%rax
4004f6: 74 08 je 400500
4004f8: bf 80 07 60 00 mov $0x600780,%edi
4004fd: c9 leaveq
4004fe: ff e0 jmpq *%rax
400500: c9 leaveq
400501: c3 retq
400502: 90 nop
400503: 90 nop
0000000000400504 :
400504: 55 push %rbp
400505: 48 89 e5 mov %rsp,%rbp
400508: 48 83 ec 20 sub $0x20,%rsp
40050c: 89 7d ec mov %edi,-0x14(%rbp)
40050f: 48 89 75 e0 mov %rsi,-0x20(%rbp)
400513: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%rbp)
40051a: bf 78 06 40 00 mov $0x400678,%edi
40051f: e8 dc fe ff ff callq 400400
400524: 8b 15 2a 04 20 00 mov 0x20042a(%rip),%edx # 600954
40052a: b8 84 06 40 00 mov $0x400684,%eax
40052f: 89 d6 mov %edx,%esi
400531: 48 89 c7 mov %rax,%rdi
400534: b8 00 00 00 00 mov $0x0,%eax
400539: e8 b2 fe ff ff callq 4003f0
40053e: 8b 15 24 04 20 00 mov 0x200424(%rip),%edx # 600968
400544: b8 96 06 40 00 mov $0x400696,%eax
400549: 89 d6 mov %edx,%esi
40054b: 48 89 c7 mov %rax,%rdi
40054e: b8 00 00 00 00 mov $0x0,%eax
400553: e8 98 fe ff ff callq 4003f0
400558: b8 aa 06 40 00 mov $0x4006aa,%eax
40055d: 8b 55 fc mov -0x4(%rbp),%edx
400560: 89 d6 mov %edx,%esi
400562: 48 89 c7 mov %rax,%rdi
400565: b8 00 00 00 00 mov $0x0,%eax
40056a: e8 81 fe ff ff callq 4003f0
40056f: b8 00 00 00 00 mov $0x0,%eax
400574: c9 leaveq
400575: c3 retq
400576: 90 nop
400577: 90 nop
400578: 90 nop
400579: 90 nop
40057a: 90 nop
40057b: 90 nop
40057c: 90 nop
40057d: 90 nop
40057e: 90 nop
40057f: 90 nop
0000000000400580 <__libc_csu_fini>:
400580: f3 c3 repz retq
400582: 66 66 66 66 66 2e 0f data32 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
400589: 1f 84 00 00 00 00 00
0000000000400590 <__libc_csu_init>:
400590: 48 89 6c 24 d8 mov %rbp,-0x28(%rsp)
400595: 4c 89 64 24 e0 mov %r12,-0x20(%rsp)
40059a: 48 8d 2d bb 01 20 00 lea 0x2001bb(%rip),%rbp # 60075c <__init_array_end>
4005a1: 4c 8d 25 b4 01 20 00 lea 0x2001b4(%rip),%r12 # 60075c <__init_array_end>
4005a8: 4c 89 6c 24 e8 mov %r13,-0x18(%rsp)
4005ad: 4c 89 74 24 f0 mov %r14,-0x10(%rsp)
4005b2: 4c 89 7c 24 f8 mov %r15,-0x8(%rsp)
4005b7: 48 89 5c 24 d0 mov %rbx,-0x30(%rsp)
4005bc: 48 83 ec 38 sub $0x38,%rsp
4005c0: 4c 29 e5 sub %r12,%rbp
4005c3: 41 89 fd mov %edi,%r13d
4005c6: 49 89 f6 mov %rsi,%r14
4005c9: 48 c1 fd 03 sar $0x3,%rbp
4005cd: 49 89 d7 mov %rdx,%r15
4005d0: e8 f3 fd ff ff callq 4003c8 <_init>
4005d5: 48 85 ed test %rbp,%rbp
4005d8: 74 1c je 4005f6 <__libc_csu_init+0x66>
4005da: 31 db xor %ebx,%ebx
4005dc: 0f 1f 40 00 nopl 0x0(%rax)
4005e0: 4c 89 fa mov %r15,%rdx
4005e3: 4c 89 f6 mov %r14,%rsi
4005e6: 44 89 ef mov %r13d,%edi
4005e9: 41 ff 14 dc callq *(%r12,%rbx,8)
4005ed: 48 83 c3 01 add $0x1,%rbx
4005f1: 48 39 eb cmp %rbp,%rbx
4005f4: 72 ea jb 4005e0 <__libc_csu_init+0x50>
4005f6: 48 8b 5c 24 08 mov 0x8(%rsp),%rbx
4005fb: 48 8b 6c 24 10 mov 0x10(%rsp),%rbp
400600: 4c 8b 64 24 18 mov 0x18(%rsp),%r12
400605: 4c 8b 6c 24 20 mov 0x20(%rsp),%r13
40060a: 4c 8b 74 24 28 mov 0x28(%rsp),%r14
40060f: 4c 8b 7c 24 30 mov 0x30(%rsp),%r15
400614: 48 83 c4 38 add $0x38,%rsp
400618: c3 retq
400619: 90 nop
40061a: 90 nop
40061b: 90 nop
40061c: 90 nop
40061d: 90 nop
40061e: 90 nop
40061f: 90 nop
0000000000400620 <__do_global_ctors_aux>:
400620: 55 push %rbp
400621: 48 89 e5 mov %rsp,%rbp
400624: 53 push %rbx
400625: 48 83 ec 08 sub $0x8,%rsp
400629: 48 8b 05 30 01 20 00 mov 0x200130(%rip),%rax # 600760 <__CTOR_LIST__>
400630: 48 83 f8 ff cmp $0xffffffffffffffff,%rax
400634: 74 19 je 40064f <__do_global_ctors_aux+0x2f>
400636: bb 60 07 60 00 mov $0x600760,%ebx
40063b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
400640: 48 83 eb 08 sub $0x8,%rbx
400644: ff d0 callq *%rax
400646: 48 8b 03 mov (%rbx),%rax
400649: 48 83 f8 ff cmp $0xffffffffffffffff,%rax
40064d: 75 f1 jne 400640 <__do_global_ctors_aux+0x20>
40064f: 48 83 c4 08 add $0x8,%rsp
400653: 5b pop %rbx
400654: c9 leaveq
400655: c3 retq
400656: 90 nop
400657: 90 nop
2.3.4、使用 objdump 反汇编查看 .data 的内容
$objdump -d -j .data test
.data区保存的是初始化的全局变量。
test: file format elf64-x86-64
Disassembly of section .data:
0000000000600950 <__data_start>:
600950: 00 00 add %al,(%rax)
...
0000000000600954 :
600954: 04 00 00 00
2.3.5、使用objdump反汇编查看.bss的内容
$objdump -d -j .bss test
.bss区保存的是未初始化的全局变量,linux会默认将未初始化的变量置为0。
test: file format elf64-x86-64
Disassembly of section .bss:
0000000000600958 :
...
0000000000600960 :
...
0000000000600968 :
2.4、共享库:$readelf -h libtest.so
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x570
Start of program headers: 64 (bytes into file)
Start of section headers: 2768 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 6
Size of section headers: 64 (bytes)
Number of section headers: 29
Section header string table index: 26
2.5、查看 test 文件中所有的符号
$readelf -s test
Value 的值是符号的地址。
Symbol table '.dynsym' contains 5 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.2.5 (2)
2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)
4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2.5 (2)
Symbol table '.symtab' contains 67 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000400200 0 SECTION LOCAL DEFAULT 1
2: 000000000040021c 0 SECTION LOCAL DEFAULT 2
3: 000000000040023c 0 SECTION LOCAL DEFAULT 3
4: 0000000000400260 0 SECTION LOCAL DEFAULT 4
5: 0000000000400280 0 SECTION LOCAL DEFAULT 5
6: 00000000004002f8 0 SECTION LOCAL DEFAULT 6
7: 000000000040033c 0 SECTION LOCAL DEFAULT 7
8: 0000000000400348 0 SECTION LOCAL DEFAULT 8
9: 0000000000400368 0 SECTION LOCAL DEFAULT 9
10: 0000000000400380 0 SECTION LOCAL DEFAULT 10
11: 00000000004003c8 0 SECTION LOCAL DEFAULT 11
12: 00000000004003e0 0 SECTION LOCAL DEFAULT 12
13: 0000000000400420 0 SECTION LOCAL DEFAULT 13
14: 0000000000400658 0 SECTION LOCAL DEFAULT 14
15: 0000000000400668 0 SECTION LOCAL DEFAULT 15
16: 00000000004006bc 0 SECTION LOCAL DEFAULT 16
17: 00000000004006e0 0 SECTION LOCAL DEFAULT 17
18: 0000000000600760 0 SECTION LOCAL DEFAULT 18
19: 0000000000600770 0 SECTION LOCAL DEFAULT 19
20: 0000000000600780 0 SECTION LOCAL DEFAULT 20
21: 0000000000600788 0 SECTION LOCAL DEFAULT 21
22: 0000000000600918 0 SECTION LOCAL DEFAULT 22
23: 0000000000600920 0 SECTION LOCAL DEFAULT 23
24: 0000000000600950 0 SECTION LOCAL DEFAULT 24
25: 0000000000600958 0 SECTION LOCAL DEFAULT 25
26: 0000000000000000 0 SECTION LOCAL DEFAULT 26
27: 000000000040044c 0 FUNC LOCAL DEFAULT 13 call_gmon_start
28: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
29: 0000000000600760 0 OBJECT LOCAL DEFAULT 18 __CTOR_LIST__
30: 0000000000600770 0 OBJECT LOCAL DEFAULT 19 __DTOR_LIST__
31: 0000000000600780 0 OBJECT LOCAL DEFAULT 20 __JCR_LIST__
32: 0000000000400470 0 FUNC LOCAL DEFAULT 13 __do_global_dtors_aux
33: 0000000000600958 1 OBJECT LOCAL DEFAULT 25 completed.6347
34: 0000000000600960 8 OBJECT LOCAL DEFAULT 25 dtor_idx.6349
35: 00000000004004e0 0 FUNC LOCAL DEFAULT 13 frame_dummy
36: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
37: 0000000000600768 0 OBJECT LOCAL DEFAULT 18 __CTOR_END__
38: 0000000000400758 0 OBJECT LOCAL DEFAULT 17 __FRAME_END__
39: 0000000000600780 0 OBJECT LOCAL DEFAULT 20 __JCR_END__
40: 0000000000400620 0 FUNC LOCAL DEFAULT 13 __do_global_ctors_aux
41: 0000000000000000 0 FILE LOCAL DEFAULT ABS test.c
42: 0000000000600920 0 OBJECT LOCAL DEFAULT 23 _GLOBAL_OFFSET_TABLE_
43: 000000000060075c 0 NOTYPE LOCAL DEFAULT 18 __init_array_end
44: 000000000060075c 0 NOTYPE LOCAL DEFAULT 18 __init_array_start
45: 0000000000600788 0 OBJECT LOCAL DEFAULT 21 _DYNAMIC
46: 0000000000600950 0 NOTYPE WEAK DEFAULT 24 data_start
47: 0000000000000000 0 FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.2.5
48: 0000000000400580 2 FUNC GLOBAL DEFAULT 13 __libc_csu_fini
49: 0000000000400420 0 FUNC GLOBAL DEFAULT 13 _start
50: 0000000000600968 4 OBJECT GLOBAL DEFAULT 25 global_data_2
51: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
52: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
53: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@@GLIBC_2.2.5
54: 0000000000400658 0 FUNC GLOBAL DEFAULT 14 _fini
55: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
56: 0000000000400668 4 OBJECT GLOBAL DEFAULT 15 _IO_stdin_used
57: 0000000000600950 0 NOTYPE GLOBAL DEFAULT 24 __data_start
58: 0000000000400670 0 OBJECT GLOBAL HIDDEN 15 __dso_handle
59: 0000000000600778 0 OBJECT GLOBAL HIDDEN 19 __DTOR_END__
60: 0000000000400590 137 FUNC GLOBAL DEFAULT 13 __libc_csu_init
61: 0000000000600958 0 NOTYPE GLOBAL DEFAULT ABS __bss_start
62: 0000000000600970 0 NOTYPE GLOBAL DEFAULT ABS _end
63: 0000000000600958 0 NOTYPE GLOBAL DEFAULT ABS _edata
64: 0000000000600954 4 OBJECT GLOBAL DEFAULT 24 global_data
65: 0000000000400504 114 FUNC GLOBAL DEFAULT 13 main
66: 00000000004003c8 0 FUNC GLOBAL DEFAULT 11 _init
.text:
已编译程序的机器代码;
.rodata:
只读数据,比如printf语句中的格式串和开关(switch)语句的跳转表;
.data:
已初始化的全局C变量。
局部C变量在运行时被保存在栈中,既不出现在.data中,也不出现在.bss节中。
.bss:
未初始化的全局C变量。
在目标文件中这个节不占据实际的空间,它仅仅是一个占位符。
目标文件格式区分初始化和未初始化变量是为了空间效率在:在目标文件中,未初始化变量不需要占据任何实际的磁盘空间。
.symtab:
一个符号表(symbol table),它存放在程序中被定义和引用的函数和全局变量的信息。
一些程序员错误地认为必须通过-g选项来编译一个程序,得到符号表信息。
实际上,每个可重定位目标文件在.symtab中都有一张符号表。然而,和编译器中的符号表不同,.symtab符号表不包含局部变量的表目。
.rel.text:
当链接噐把这个目标文件和其他文件结合时,.text节中的许多位置都需要修改。
一般而言,任何调用外部函数或者引用全局变量的指令都需要修改。
另一方面调用本地函数的指令则不需要修改。
注意,可执行目标文件中并不需要重定位信息,因此通常省略,除非使用者显式地指示链接器包含这些信息。
.rel.data:
被模块定义或引用的任何全局变量的信息。一般而言,任何已初始化全局变量的初始值是全局变量或者外部定义函数的地址都需要被修改。
.debug:
一个调试符号表,其有些表目是程序中定义的局部变量和类型定义,有些表目是程序中定义和引用的全局变量,有些是原始的C源文件。
只有以-g选项调用编译驱动程序时,才会得到这张表。
.line:
原始C源程序中的行号和.text节中机器指令之间的映射。只有以-g选项调用编译驱动程序时,才会得到这张表。
.strtab:
一个字符串表,其内容包括.symtab和.debug节中的符号表,以及节头部中的节名字。字符串表就是以null结尾的字符串序列。
PROGBITS(程序必须解释的信息,如二进制代码),STRTAB用于存储与ELF格式有关的字符串,但与程序没有直接关联,如各个节的名称(.text, .comment)
.data保存初始化过的数据,这是普通程序数据的一部分,可以在程序运行期间修改。
.rodata保存了只读数据,可以读取但不能修改,例如printf语句中的所有静态字符串封装到该节。
.init和.fini保存了进程初始化和结束所用的代码,这通常是由编译器自动添加的。
.hash是一个散列表,允许在不对全表元素进行线性搜索的情况下,快速访问所有符号表项。
2.6、查看文件的段信息
$readelf -l test
区到段的映射,基本上是按照区的顺序进行映射。
如果Flags为R和E,表示该段可读和可执行。
如果Flags为W,表示该段可写。
VirtAddr是每个段的虚拟起始地址。这个地址并不是位于真正内存上的地址(物理地址)。
Elf file type is EXEC (Executable file)
Entry point 0x400420
There are 8 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040
0x00000000000001c0 0x00000000000001c0 R E 8
INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200
0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x000000000000075c 0x000000000000075c R E 200000
LOAD 0x0000000000000760 0x0000000000600760 0x0000000000600760
0x00000000000001f8 0x0000000000000210 RW 200000
DYNAMIC 0x0000000000000788 0x0000000000600788 0x0000000000600788
0x0000000000000190 0x0000000000000190 RW 8
NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
0x0000000000000044 0x0000000000000044 R 4
GNU_EH_FRAME 0x00000000000006bc 0x00000000004006bc 0x00000000004006bc
0x0000000000000024 0x0000000000000024 R 4
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
04 .dynamic
05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07
上述各段组成了最终在内存中执行的程序,其还提供了各段在虚拟地址空间和物理地址空间中的大小、位置、标志、访问授权和对齐方面的信息。各段语义如下:
PHDR保存程序头表
INTERP指定程序从可行性文件映射到内存之后,必须调用的解释器,它是通过链接其他库来满足未解析的引用,用于在虚拟地址空间中插入程序运行所需的动态库。
LOAD表示一个需要从二进制文件映射到虚拟地址空间的段,其中保存了常量数据(如字符串),程序目标代码等。
DYNAMIC段保存了由动态连接器(即INTERP段中指定的解释器)使用的信息。
段有多种类型,下面介绍LOAD类型:
LOAD:该段的内容从可执行文件中获取。Offset标识内核从文件读取的位置。FileSiz标识读取多少字节。
那么,执行test之后的进程的段布局是如何呢?
可以通过cat /proc/pid/maps来查看。pid是进程的pid。
但是该test运行时间很短,可以使用gdb加断点来运行,或者在return语句之前加上sleep()。
下面使用gdb加断点的形式:
GNU gdb (GDB) Red Hat Enterprise Linux (7.2-50.el6)
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
...
Reading symbols from /data/readyao/qqlive_zb_prj/server/cgi_push_post_replay/lib/test...(no debugging symbols found)...done.
(gdb) b main
Breakpoint 1 at 0x400508
(gdb) r
Starting program: /data/readyao/qqlive_zb_prj/server/cgi_push_post_replay/lib/test
[Thread debugging using libthread_db enabled]
Breakpoint 1, 0x0000000000400508 in main ()
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.49.tl1.x86_64
$cat /proc/6929/maps
00400000-00401000 r-xp 00000000 ca:11 8626925 /test
00600000-00601000 rw-p 00000000 ca:11 8626925 /test
7ffff762d000-7ffff7644000 r-xp 00000000 ca:01 332328 /lib64/libpthread-2.12.so
7ffff7644000-7ffff7843000 ---p 00017000 ca:01 332328 /lib64/libpthread-2.12.so
7ffff7843000-7ffff7844000 r--p 00016000 ca:01 332328 /lib64/libpthread-2.12.so
7ffff7844000-7ffff7845000 rw-p 00017000 ca:01 332328 /lib64/libpthread-2.12.so
7ffff7845000-7ffff7849000 rw-p 00000000 00:00 0
7ffff7849000-7ffff784b000 r-xp 00000000 ca:01 332237 /lib64/libdl-2.12.so
7ffff784b000-7ffff7a4b000 ---p 00002000 ca:01 332237 /lib64/libdl-2.12.so
7ffff7a4b000-7ffff7a4c000 r--p 00002000 ca:01 332237 /lib64/libdl-2.12.so
7ffff7a4c000-7ffff7a4d000 rw-p 00003000 ca:01 332237 /lib64/libdl-2.12.so
7ffff7a4d000-7ffff7bd3000 r-xp 00000000 ca:01 332102 /lib64/libc-2.12.so
7ffff7bd3000-7ffff7dd3000 ---p 00186000 ca:01 332102 /lib64/libc-2.12.so
7ffff7dd3000-7ffff7dd7000 r--p 00186000 ca:01 332102 /lib64/libc-2.12.so
7ffff7dd7000-7ffff7dd8000 rw-p 0018a000 ca:01 332102 /lib64/libc-2.12.so
7ffff7dd8000-7ffff7ddd000 rw-p 00000000 00:00 0
7ffff7ddd000-7ffff7dfd000 r-xp 00000000 ca:01 332126 /lib64/ld-2.12.so
7ffff7ed9000-7ffff7edc000 rw-p 00000000 00:00 0
7ffff7eeb000-7ffff7eee000 r-xp 00000000 ca:01 336319 /lib64/libonion_security.so.1.0.13
7ffff7eee000-7ffff7fee000 ---p 00003000 ca:01 336319 /lib64/libonion_security.so.1.0.13
7ffff7fee000-7ffff7fef000 rw-p 00003000 ca:01 336319 /lib64/libonion_security.so.1.0.13
7ffff7fef000-7ffff7ffb000 rw-p 00000000 00:00 0
7ffff7ffb000-7ffff7ffc000 r-xp 00000000 00:00 0 [vdso]
7ffff7ffc000-7ffff7ffd000 r--p 0001f000 ca:01 332126 /lib64/ld-2.12.so
7ffff7ffd000-7ffff7ffe000 rw-p 00020000 ca:01 332126 /lib64/ld-2.12.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0
7ffffffea000-7ffffffff000 rw-p 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
前面一部分是VMA的起始地址和结束地址,最后一部分是该区域内容所属文件。
在32位系统中,进程地址空间为4G,分为用户空间和内核空间。
refer:
https://blog.csdn.net/Linux_ever/article/details/78210089
https://blog.csdn.net/freeking101/article/details/78270487
readelf命令:http://man.linuxde.net/readelf
ELF文件格式解析:https://www.2cto.com/kf/201605/511370.html
ELF文件格式解析:http://blog.csdn.net/earbao/article/details/51746275
可执行文件(ELF)格式的理解------系列文章:http://www.cnblogs.com/xmphoenix/archive/2011/10/23/2221879.html
Linux内核分析——ELF文件格式分析:http://www.cnblogs.com/20135223heweiqin/p/5554922.html
linux第三次实践:ELF文件格式分析:http://www.cnblogs.com/cdcode/p/5551649.html
程序破解及ELF文件格式分析:http://www.jianshu.com/p/7a75324e98ab
Android逆向之旅---SO(ELF)文件格式详解:http://blog.csdn.net/jiangwei0910410003/article/details/49336613