#ifndef _INPUT_H
#define _INPUT_H
/*
* Copyright (c) 1999-2002 Vojtech Pavlik
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#ifdef __KERNEL__
#include
#include
#else
#include
#include
#include
#include
#endif
/*
* The event structure itself
*/
struct input_event {
struct timeval time;
__u16 type;
__u16 code;
__s32 value;
};
/*
* Protocol version.
*/
#define EV_VERSION 0x010001
/*
* IOCTLs (0x00 - 0x7f)
*/
struct input_id {
__u16 bustype;
__u16 vendor;
__u16 product;
__u16 version;
};
/**
* struct input_absinfo - used by EVIOCGABS/EVIOCSABS ioctls
* @value: latest reported value for the axis.
* @minimum: specifies minimum value for the axis.
* @maximum: specifies maximum value for the axis.
* @fuzz: specifies fuzz value that is used to filter noise from
* the event stream.
* @flat: values that are within this value will be discarded by
* joydev interface and reported as 0 instead.
* @resolution: specifies resolution for the values reported for
* the axis.
*
* Note that input core does not clamp reported values to the
* [minimum, maximum] limits, such task is left to userspace.
*
* Resolution for main axes (ABS_X, ABS_Y, ABS_Z) is reported in
* units per millimeter (units/mm), resolution for rotational axes
* (ABS_RX, ABS_RY, ABS_RZ) is reported in units per radian.
*/
struct input_absinfo {
__s32 value;
__s32 minimum;
__s32 maximum;
__s32 fuzz;
__s32 flat;
__s32 resolution;
};
/**
* struct input_keymap_entry - used by EVIOCGKEYCODE/EVIOCSKEYCODE ioctls
* @scancode: scancode represented in machine-endian form.
* @len: length of the scancode that resides in @scancode buffer.
* @index: index in the keymap, may be used instead of scancode
* @flags: allows to specify how kernel should handle the request. For
* example, setting INPUT_KEYMAP_BY_INDEX flag indicates that kernel
* should perform lookup in keymap by @index instead of @scancode
* @keycode: key code assigned to this scancode
*
* The structure is used to retrieve and modify keymap data. Users have
* option of performing lookup either by @scancode itself or by @index
* in keymap entry. EVIOCGKEYCODE will also return scancode or index
* (depending on which element was used to perform lookup).
*/
struct input_keymap_entry {
#define INPUT_KEYMAP_BY_INDEX (1 << 0)
__u8 flags;
__u8 len;
__u16 index;
__u32 keycode;
__u8 scancode[32];
};
#define EVIOCGVERSION _IOR('E', 0x01, int) /* get driver version */
#define EVIOCGID _IOR('E', 0x02, struct input_id) /* get device ID */
#define EVIOCGREP _IOR('E', 0x03, unsigned int[2]) /* get repeat settings */
#define EVIOCSREP _IOW('E', 0x03, unsigned int[2]) /* set repeat settings */
#define EVIOCGKEYCODE _IOR('E', 0x04, unsigned int[2]) /* get keycode */
#define EVIOCGKEYCODE_V2 _IOR('E', 0x04, struct input_keymap_entry)
#define EVIOCSKEYCODE _IOW('E', 0x04, unsigned int[2]) /* set keycode */
#define EVIOCSKEYCODE_V2 _IOW('E', 0x04, struct input_keymap_entry)
#define EVIOCGNAME(len) _IOC(_IOC_READ, 'E', 0x06, len) /* get device name */
#define EVIOCGPHYS(len) _IOC(_IOC_READ, 'E', 0x07, len) /* get physical location */
#define EVIOCGUNIQ(len) _IOC(_IOC_READ, 'E', 0x08, len) /* get unique identifier */
#define EVIOCGPROP(len) _IOC(_IOC_READ, 'E', 0x09, len) /* get device properties */
#define EVIOCGKEY(len) _IOC(_IOC_READ, 'E', 0x18, len) /* get global key state */
#define EVIOCGLED(len) _IOC(_IOC_READ, 'E', 0x19, len) /* get all LEDs */
#define EVIOCGSND(len) _IOC(_IOC_READ, 'E', 0x1a, len) /* get all sounds status */
#define EVIOCGSW(len) _IOC(_IOC_READ, 'E', 0x1b, len) /* get all switch states */
#define EVIOCGBIT(ev,len) _IOC(_IOC_READ, 'E', 0x20 + ev, len) /* get event bits */
#define EVIOCGABS(abs) _IOR('E', 0x40 + abs, struct input_absinfo) /* get abs value/limits */
#define EVIOCSABS(abs) _IOW('E', 0xc0 + abs, struct input_absinfo) /* set abs value/limits */
#define EVIOCSFF _IOC(_IOC_WRITE, 'E', 0x80, sizeof(struct ff_effect)) /* send a force effect to a force feedback device */
#define EVIOCRMFF _IOW('E', 0x81, int) /* Erase a force effect */
#define EVIOCGEFFECTS _IOR('E', 0x84, int) /* Report number of effects playable at the same time */
#define EVIOCGRAB _IOW('E', 0x90, int) /* Grab/Release device */
/*
* Device properties and quirks
*/
#define INPUT_PROP_POINTER 0x00 /* needs a pointer */
#define INPUT_PROP_DIRECT 0x01 /* direct input devices */
#define INPUT_PROP_BUTTONPAD 0x02 /* has button(s) under pad */
#define INPUT_PROP_SEMI_MT 0x03 /* touch rectangle only */
#define INPUT_PROP_MAX 0x1f
#define INPUT_PROP_CNT (INPUT_PROP_MAX + 1)
/*
* Event types
*/
#define EV_SYN 0x00
#define EV_KEY 0x01
#define EV_REL 0x02
#define EV_ABS 0x03
#define EV_MSC 0x04
#define EV_SW 0x05
#define EV_LED 0x11
#define EV_SND 0x12
#define EV_REP 0x14
#define EV_FF 0x15
#define EV_PWR 0x16
#define EV_FF_STATUS 0x17
#define EV_MAX 0x1f
#define EV_CNT (EV_MAX+1)
/*
* Synchronization events.
*/
#define SYN_REPORT 0
#define SYN_CONFIG 1
#define SYN_MT_REPORT 2
#define SYN_DROPPED 3
/*
* Keys and buttons
*
* Most of the keys/buttons are modeled after USB HUT 1.12
* (see http://www.usb.org/developers/hidpage).
* Abbreviations in the comments:
* AC - Application Control
* AL - Application Launch Button
* SC - System Control
*/
#define KEY_RESERVED 0
#define KEY_ESC 1
#define KEY_1 2
#define KEY_2 3
#define KEY_3 4
#define KEY_4 5
#define KEY_5 6
#define KEY_6 7
#define KEY_7 8
#define KEY_8 9
#define KEY_9 10
#define KEY_0 11
#define KEY_MINUS 12
#define KEY_EQUAL 13
#define KEY_BACKSPACE 14
#define KEY_TAB 15
#define KEY_Q 16
#define KEY_W 17
#define KEY_E 18
#define KEY_R 19
#define KEY_T 20
#define KEY_Y 21
#define KEY_U 22
#define KEY_I 23
#define KEY_O 24
#define KEY_P 25
#define KEY_LEFTBRACE 26
#define KEY_RIGHTBRACE 27
#define KEY_ENTER 28
#define KEY_LEFTCTRL 29
#define KEY_A 30
#define KEY_S 31
#define KEY_D 32
#define KEY_F 33
#define KEY_G 34
#define KEY_H 35
#define KEY_J 36
#define KEY_K 37
#define KEY_L 38
#define KEY_SEMICOLON 39
#define KEY_APOSTROPHE 40
#define KEY_GRAVE 41
#define KEY_LEFTSHIFT 42
#define KEY_BACKSLASH 43
#define KEY_Z 44
#define KEY_X 45
#define KEY_C 46
#define KEY_V 47
#define KEY_B 48
#define KEY_N 49
#define KEY_M 50
#define KEY_COMMA 51
#define KEY_DOT 52
#define KEY_SLASH 53
#define KEY_RIGHTSHIFT 54
#define KEY_KPASTERISK 55
#define KEY_LEFTALT 56
#define KEY_SPACE 57
#define KEY_CAPSLOCK 58
#define KEY_F1 59
#define KEY_F2 60
#define KEY_F3 61
#define KEY_F4 62
#define KEY_F5 63
#define KEY_F6 64
#define KEY_F7 65
#define KEY_F8 66
#define KEY_F9 67
#define KEY_F10 68
#define KEY_NUMLOCK 69
#define KEY_SCROLLLOCK 70
#define KEY_KP7 71
#define KEY_KP8 72
#define KEY_KP9 73
#define KEY_KPMINUS 74
#define KEY_KP4 75
#define KEY_KP5 76
#define KEY_KP6 77
#define KEY_KPPLUS 78
#define KEY_KP1 79
#define KEY_KP2 80
#define KEY_KP3 81
#define KEY_KP0 82
#define KEY_KPDOT 83
#define KEY_ZENKAKUHANKAKU 85
#define KEY_102ND 86
#define KEY_F11 87
#define KEY_F12 88
#define KEY_RO 89
#define KEY_KATAKANA 90
#define KEY_HIRAGANA 91
#define KEY_HENKAN 92
#define KEY_KATAKANAHIRAGANA 93
#define KEY_MUHENKAN 94
#define KEY_KPJPCOMMA 95
#define KEY_KPENTER 96
#define KEY_RIGHTCTRL 97
#define KEY_KPSLASH 98
#define KEY_SYSRQ 99
#define KEY_RIGHTALT 100
#define KEY_LINEFEED 101
#define KEY_HOME 102
#define KEY_UP 103
#define KEY_PAGEUP 104
#define KEY_LEFT 105
#define KEY_RIGHT 106
#define KEY_END 107
#define KEY_DOWN 108
#define KEY_PAGEDOWN 109
#define KEY_INSERT 110
#define KEY_DELETE 111
#define KEY_MACRO 112
#define KEY_MUTE 113
#define KEY_VOLUMEDOWN 114
#define KEY_VOLUMEUP 115
#define KEY_POWER 116 /* SC System Power Down */
#define KEY_KPEQUAL 117
#define KEY_KPPLUSMINUS 118
#define KEY_PAUSE 119
#define KEY_SCALE 120 /* AL Compiz Scale (Expose) */
#define KEY_KPCOMMA 121
#define KEY_HANGEUL 122
#define KEY_HANGUEL KEY_HANGEUL
#define KEY_HANJA 123
#define KEY_YEN 124
#define KEY_LEFTMETA 125
#define KEY_RIGHTMETA 126
#define KEY_COMPOSE 127
#define KEY_STOP 128 /* AC Stop */
#define KEY_AGAIN 129
#define KEY_PROPS 130 /* AC Properties */
#define KEY_UNDO 131 /* AC Undo */
#define KEY_FRONT 132
#define KEY_COPY 133 /* AC Copy */
#define KEY_OPEN 134 /* AC Open */
#define KEY_PASTE 135 /* AC Paste */
#define KEY_FIND 136 /* AC Search */
#define KEY_CUT 137 /* AC Cut */
#define KEY_HELP 138 /* AL Integrated Help Center */
#define KEY_MENU 139 /* Menu (show menu) */
#define KEY_CALC 140 /* AL Calculator */
#define KEY_SETUP 141
#define KEY_SLEEP 142 /* SC System Sleep */
#define KEY_WAKEUP 143 /* System Wake Up */
#define KEY_FILE 144 /* AL Local Machine Browser */
#define KEY_SENDFILE 145
#define KEY_DELETEFILE 146
#define KEY_XFER 147
#define KEY_PROG1 148
#define KEY_PROG2 149
#define KEY_WWW 150 /* AL Internet Browser */
#define KEY_MSDOS 151
#define KEY_COFFEE 152 /* AL Terminal Lock/Screensaver */
#define KEY_SCREENLOCK KEY_COFFEE
#define KEY_DIRECTION 153
#define KEY_CYCLEWINDOWS 154
#define KEY_MAIL 155
#define KEY_BOOKMARKS 156 /* AC Bookmarks */
#define KEY_COMPUTER 157
#define KEY_BACK 158 /* AC Back */
#define KEY_FORWARD 159 /* AC Forward */
#define KEY_CLOSECD 160
#define KEY_EJECTCD 161
#define KEY_EJECTCLOSECD 162
#define KEY_NEXTSONG 163
#define KEY_PLAYPAUSE 164
#define KEY_PREVIOUSSONG 165
#define KEY_STOPCD 166
#define KEY_RECORD 167
#define KEY_REWIND 168
#define KEY_PHONE 169 /* Media Select Telephone */
#define KEY_ISO 170
#define KEY_CONFIG 171 /* AL Consumer Control Configuration */
#define KEY_HOMEPAGE 172 /* AC Home */
#define KEY_REFRESH 173 /* AC Refresh */
#define KEY_EXIT 174 /* AC Exit */
#define KEY_MOVE 175
#define KEY_EDIT 176
#define KEY_SCROLLUP 177
#define KEY_SCROLLDOWN 178
#define KEY_KPLEFTPAREN 179
#define KEY_KPRIGHTPAREN 180
#define KEY_NEW 181 /* AC New */
#define KEY_REDO 182 /* AC Redo/Repeat */
#define KEY_F13 183
#define KEY_F14 184
#define KEY_F15 185
#define KEY_F16 186
#define KEY_F17 187
#define KEY_F18 188
#define KEY_F19 189
#define KEY_F20 190
#define KEY_F21 191
#define KEY_F22 192
#define KEY_F23 193
#define KEY_F24 194
#define KEY_PLAYCD 200
#define KEY_PAUSECD 201
#define KEY_PROG3 202
#define KEY_PROG4 203
#define KEY_DASHBOARD 204 /* AL Dashboard */
#define KEY_SUSPEND 205
#define KEY_CLOSE 206 /* AC Close */
#define KEY_PLAY 207
#define KEY_FASTFORWARD 208
#define KEY_BASSBOOST 209
#define KEY_PRINT 210 /* AC Print */
#define KEY_HP 211
#define KEY_CAMERA 212
#define KEY_SOUND 213
#define KEY_QUESTION 214
#define KEY_EMAIL 215
#define KEY_CHAT 216
#define KEY_SEARCH 217
#define KEY_CONNECT 218
#define KEY_FINANCE 219 /* AL Checkbook/Finance */
#define KEY_SPORT 220
#define KEY_SHOP 221
#define KEY_ALTERASE 222
#define KEY_CANCEL 223 /* AC Cancel */
#define KEY_BRIGHTNESSDOWN 224
#define KEY_BRIGHTNESSUP 225
#define KEY_MEDIA 226
#define KEY_SWITCHVIDEOMODE 227 /* Cycle between available video
outputs (Monitor/LCD/TV-out/etc) */
#define KEY_KBDILLUMTOGGLE 228
#define KEY_KBDILLUMDOWN 229
#define KEY_KBDILLUMUP 230
#define KEY_SEND 231 /* AC Send */
#define KEY_REPLY 232 /* AC Reply */
#define KEY_FORWARDMAIL 233 /* AC Forward Msg */
#define KEY_SAVE 234 /* AC Save */
#define KEY_DOCUMENTS 235
#define KEY_BATTERY 236
#define KEY_BLUETOOTH 237
#define KEY_WLAN 238
#define KEY_UWB 239
#define KEY_UNKNOWN 240
#define KEY_VIDEO_NEXT 241 /* drive next video source */
#define KEY_VIDEO_PREV 242 /* drive previous video source */
#define KEY_BRIGHTNESS_CYCLE 243 /* brightness up, after max is min */
#define KEY_BRIGHTNESS_ZERO 244 /* brightness off, use ambient */
#define KEY_DISPLAY_OFF 245 /* display device to off state */
#define KEY_WIMAX 246
#define KEY_RFKILL 247 /* Key that controls all radios */
/* Code 255 is reserved for special needs of AT keyboard driver */
#define BTN_MISC 0x100
#define BTN_0 0x100
#define BTN_1 0x101
#define BTN_2 0x102
#define BTN_3 0x103
#define BTN_4 0x104
#define BTN_5 0x105
#define BTN_6 0x106
#define BTN_7 0x107
#define BTN_8 0x108
#define BTN_9 0x109
#define BTN_MOUSE 0x110
#define BTN_LEFT 0x110
#define BTN_RIGHT 0x111
#define BTN_MIDDLE 0x112
#define BTN_SIDE 0x113
#define BTN_EXTRA 0x114
#define BTN_FORWARD 0x115
#define BTN_BACK 0x116
#define BTN_TASK 0x117
#define BTN_JOYSTICK 0x120
#define BTN_TRIGGER 0x120
#define BTN_THUMB 0x121
#define BTN_THUMB2 0x122
#define BTN_TOP 0x123
#define BTN_TOP2 0x124
#define BTN_PINKIE 0x125
#define BTN_BASE 0x126
#define BTN_BASE2 0x127
#define BTN_BASE3 0x128
#define BTN_BASE4 0x129
#define BTN_BASE5 0x12a
#define BTN_BASE6 0x12b
#define BTN_DEAD 0x12f
#define BTN_GAMEPAD 0x130
#define BTN_A 0x130
#define BTN_B 0x131
#define BTN_C 0x132
#define BTN_X 0x133
#define BTN_Y 0x134
#define BTN_Z 0x135
#define BTN_TL 0x136
#define BTN_TR 0x137
#define BTN_TL2 0x138
#define BTN_TR2 0x139
#define BTN_SELECT 0x13a
#define BTN_START 0x13b
#define BTN_MODE 0x13c
#define BTN_THUMBL 0x13d
#define BTN_THUMBR 0x13e
#define BTN_DIGI 0x140
#define BTN_TOOL_PEN 0x140
#define BTN_TOOL_RUBBER 0x141
#define BTN_TOOL_BRUSH 0x142
#define BTN_TOOL_PENCIL 0x143
#define BTN_TOOL_AIRBRUSH 0x144
#define BTN_TOOL_FINGER 0x145
#define BTN_TOOL_MOUSE 0x146
#define BTN_TOOL_LENS 0x147
#define BTN_TOUCH 0x14a
#define BTN_STYLUS 0x14b
#define BTN_STYLUS2 0x14c
#define BTN_TOOL_DOUBLETAP 0x14d
#define BTN_TOOL_TRIPLETAP 0x14e
#define BTN_TOOL_QUADTAP 0x14f /* Four fingers on trackpad */
#define BTN_WHEEL 0x150
#define BTN_GEAR_DOWN 0x150
#define BTN_GEAR_UP 0x151
#define KEY_OK 0x160
#define KEY_SELECT 0x161
#define KEY_GOTO 0x162
#define KEY_CLEAR 0x163
#define KEY_POWER2 0x164
#define KEY_OPTION 0x165
#define KEY_INFO 0x166 /* AL OEM Features/Tips/Tutorial */
#define KEY_TIME 0x167
#define KEY_VENDOR 0x168
#define KEY_ARCHIVE 0x169
#define KEY_PROGRAM 0x16a /* Media Select Program Guide */
#define KEY_CHANNEL 0x16b
#define KEY_FAVORITES 0x16c
#define KEY_EPG 0x16d
#define KEY_PVR 0x16e /* Media Select Home */
#define KEY_MHP 0x16f
#define KEY_LANGUAGE 0x170
#define KEY_TITLE 0x171
#define KEY_SUBTITLE 0x172
#define KEY_ANGLE 0x173
#define KEY_ZOOM 0x174
#define KEY_MODE 0x175
#define KEY_KEYBOARD 0x176
#define KEY_SCREEN 0x177
#define KEY_PC 0x178 /* Media Select Computer */
#define KEY_TV 0x179 /* Media Select TV */
#define KEY_TV2 0x17a /* Media Select Cable */
#define KEY_VCR 0x17b /* Media Select VCR */
#define KEY_VCR2 0x17c /* VCR Plus */
#define KEY_SAT 0x17d /* Media Select Satellite */
#define KEY_SAT2 0x17e
#define KEY_CD 0x17f /* Media Select CD */
#define KEY_TAPE 0x180 /* Media Select Tape */
#define KEY_RADIO 0x181
#define KEY_TUNER 0x182 /* Media Select Tuner */
#define KEY_PLAYER 0x183
#define KEY_TEXT 0x184
#define KEY_DVD 0x185 /* Media Select DVD */
#define KEY_AUX 0x186
#define KEY_MP3 0x187
#define KEY_AUDIO 0x188 /* AL Audio Browser */
#define KEY_VIDEO 0x189 /* AL Movie Browser */
#define KEY_DIRECTORY 0x18a
#define KEY_LIST 0x18b
#define KEY_MEMO 0x18c /* Media Select Messages */
#define KEY_CALENDAR 0x18d
#define KEY_RED 0x18e
#define KEY_GREEN 0x18f
#define KEY_YELLOW 0x190
#define KEY_BLUE 0x191
#define KEY_CHANNELUP 0x192 /* Channel Increment */
#define KEY_CHANNELDOWN 0x193 /* Channel Decrement */
#define KEY_FIRST 0x194
#define KEY_LAST 0x195 /* Recall Last */
#define KEY_AB 0x196
#define KEY_NEXT 0x197
#define KEY_RESTART 0x198
#define KEY_SLOW 0x199
#define KEY_SHUFFLE 0x19a
#define KEY_BREAK 0x19b
#define KEY_PREVIOUS 0x19c
#define KEY_DIGITS 0x19d
#define KEY_TEEN 0x19e
#define KEY_TWEN 0x19f
#define KEY_VIDEOPHONE 0x1a0 /* Media Select Video Phone */
#define KEY_GAMES 0x1a1 /* Media Select Games */
#define KEY_ZOOMIN 0x1a2 /* AC Zoom In */
#define KEY_ZOOMOUT 0x1a3 /* AC Zoom Out */
#define KEY_ZOOMRESET 0x1a4 /* AC Zoom */
#define KEY_WORDPROCESSOR 0x1a5 /* AL Word Processor */
#define KEY_EDITOR 0x1a6 /* AL Text Editor */
#define KEY_SPREADSHEET 0x1a7 /* AL Spreadsheet */
#define KEY_GRAPHICSEDITOR 0x1a8 /* AL Graphics Editor */
#define KEY_PRESENTATION 0x1a9 /* AL Presentation App */
#define KEY_DATABASE 0x1aa /* AL Database App */
#define KEY_NEWS 0x1ab /* AL Newsreader */
#define KEY_VOICEMAIL 0x1ac /* AL Voicemail */
#define KEY_ADDRESSBOOK 0x1ad /* AL Contacts/Address Book */
#define KEY_MESSENGER 0x1ae /* AL Instant Messaging */
#define KEY_DISPLAYTOGGLE 0x1af /* Turn display (LCD) on and off */
#define KEY_SPELLCHECK 0x1b0 /* AL Spell Check */
#define KEY_LOGOFF 0x1b1 /* AL Logoff */
#define KEY_DOLLAR 0x1b2
#define KEY_EURO 0x1b3
#define KEY_FRAMEBACK 0x1b4 /* Consumer - transport controls */
#define KEY_FRAMEFORWARD 0x1b5
#define KEY_CONTEXT_MENU 0x1b6 /* GenDesc - system context menu */
#define KEY_MEDIA_REPEAT 0x1b7 /* Consumer - transport control */
#define KEY_10CHANNELSUP 0x1b8 /* 10 channels up (10+) */
#define KEY_10CHANNELSDOWN 0x1b9 /* 10 channels down (10-) */
#define KEY_IMAGES 0x1ba /* AL Image Browser */
#define KEY_DEL_EOL 0x1c0
#define KEY_DEL_EOS 0x1c1
#define KEY_INS_LINE 0x1c2
#define KEY_DEL_LINE 0x1c3
#define KEY_FN 0x1d0
#define KEY_FN_ESC 0x1d1
#define KEY_FN_F1 0x1d2
#define KEY_FN_F2 0x1d3
#define KEY_FN_F3 0x1d4
#define KEY_FN_F4 0x1d5
#define KEY_FN_F5 0x1d6
#define KEY_FN_F6 0x1d7
#define KEY_FN_F7 0x1d8
#define KEY_FN_F8 0x1d9
#define KEY_FN_F9 0x1da
#define KEY_FN_F10 0x1db
#define KEY_FN_F11 0x1dc
#define KEY_FN_F12 0x1dd
#define KEY_FN_1 0x1de
#define KEY_FN_2 0x1df
#define KEY_FN_D 0x1e0
#define KEY_FN_E 0x1e1
#define KEY_FN_F 0x1e2
#define KEY_FN_S 0x1e3
#define KEY_FN_B 0x1e4
#define KEY_BRL_DOT1 0x1f1
#define KEY_BRL_DOT2 0x1f2
#define KEY_BRL_DOT3 0x1f3
#define KEY_BRL_DOT4 0x1f4
#define KEY_BRL_DOT5 0x1f5
#define KEY_BRL_DOT6 0x1f6
#define KEY_BRL_DOT7 0x1f7
#define KEY_BRL_DOT8 0x1f8
#define KEY_BRL_DOT9 0x1f9
#define KEY_BRL_DOT10 0x1fa
#define KEY_NUMERIC_0 0x200 /* used by phones, remote controls, */
#define KEY_NUMERIC_1 0x201 /* and other keypads */
#define KEY_NUMERIC_2 0x202
#define KEY_NUMERIC_3 0x203
#define KEY_NUMERIC_4 0x204
#define KEY_NUMERIC_5 0x205
#define KEY_NUMERIC_6 0x206
#define KEY_NUMERIC_7 0x207
#define KEY_NUMERIC_8 0x208
#define KEY_NUMERIC_9 0x209
#define KEY_NUMERIC_STAR 0x20a
#define KEY_NUMERIC_POUND 0x20b
#define KEY_CAMERA_FOCUS 0x210
#define KEY_WPS_BUTTON 0x211 /* WiFi Protected Setup key */
#define KEY_TOUCHPAD_TOGGLE 0x212 /* Request switch touchpad on or off */
#define KEY_TOUCHPAD_ON 0x213
#define KEY_TOUCHPAD_OFF 0x214
#define KEY_CAMERA_ZOOMIN 0x215
#define KEY_CAMERA_ZOOMOUT 0x216
#define KEY_CAMERA_UP 0x217
#define KEY_CAMERA_DOWN 0x218
#define KEY_CAMERA_LEFT 0x219
#define KEY_CAMERA_RIGHT 0x21a
#define BTN_TRIGGER_HAPPY 0x2c0
#define BTN_TRIGGER_HAPPY1 0x2c0
#define BTN_TRIGGER_HAPPY2 0x2c1
#define BTN_TRIGGER_HAPPY3 0x2c2
#define BTN_TRIGGER_HAPPY4 0x2c3
#define BTN_TRIGGER_HAPPY5 0x2c4
#define BTN_TRIGGER_HAPPY6 0x2c5
#define BTN_TRIGGER_HAPPY7 0x2c6
#define BTN_TRIGGER_HAPPY8 0x2c7
#define BTN_TRIGGER_HAPPY9 0x2c8
#define BTN_TRIGGER_HAPPY10 0x2c9
#define BTN_TRIGGER_HAPPY11 0x2ca
#define BTN_TRIGGER_HAPPY12 0x2cb
#define BTN_TRIGGER_HAPPY13 0x2cc
#define BTN_TRIGGER_HAPPY14 0x2cd
#define BTN_TRIGGER_HAPPY15 0x2ce
#define BTN_TRIGGER_HAPPY16 0x2cf
#define BTN_TRIGGER_HAPPY17 0x2d0
#define BTN_TRIGGER_HAPPY18 0x2d1
#define BTN_TRIGGER_HAPPY19 0x2d2
#define BTN_TRIGGER_HAPPY20 0x2d3
#define BTN_TRIGGER_HAPPY21 0x2d4
#define BTN_TRIGGER_HAPPY22 0x2d5
#define BTN_TRIGGER_HAPPY23 0x2d6
#define BTN_TRIGGER_HAPPY24 0x2d7
#define BTN_TRIGGER_HAPPY25 0x2d8
#define BTN_TRIGGER_HAPPY26 0x2d9
#define BTN_TRIGGER_HAPPY27 0x2da
#define BTN_TRIGGER_HAPPY28 0x2db
#define BTN_TRIGGER_HAPPY29 0x2dc
#define BTN_TRIGGER_HAPPY30 0x2dd
#define BTN_TRIGGER_HAPPY31 0x2de
#define BTN_TRIGGER_HAPPY32 0x2df
#define BTN_TRIGGER_HAPPY33 0x2e0
#define BTN_TRIGGER_HAPPY34 0x2e1
#define BTN_TRIGGER_HAPPY35 0x2e2
#define BTN_TRIGGER_HAPPY36 0x2e3
#define BTN_TRIGGER_HAPPY37 0x2e4
#define BTN_TRIGGER_HAPPY38 0x2e5
#define BTN_TRIGGER_HAPPY39 0x2e6
#define BTN_TRIGGER_HAPPY40 0x2e7
/* We avoid low common keys in module aliases so they don't get huge. */
#define KEY_MIN_INTERESTING KEY_MUTE
#define KEY_MAX 0x2ff
#define KEY_CNT (KEY_MAX+1)
/*
* Relative axes
*/
#define REL_X 0x00
#define REL_Y 0x01
#define REL_Z 0x02
#define REL_RX 0x03
#define REL_RY 0x04
#define REL_RZ 0x05
#define REL_HWHEEL 0x06
#define REL_DIAL 0x07
#define REL_WHEEL 0x08
#define REL_MISC 0x09
#define REL_MAX 0x0f
#define REL_CNT (REL_MAX+1)
/*
* Absolute axes
*/
#define ABS_X 0x00
#define ABS_Y 0x01
#define ABS_Z 0x02
#define ABS_RX 0x03
#define ABS_RY 0x04
#define ABS_RZ 0x05
#define ABS_THROTTLE 0x06
#define ABS_RUDDER 0x07
#define ABS_WHEEL 0x08
#define ABS_GAS 0x09
#define ABS_BRAKE 0x0a
#define ABS_HAT0X 0x10
#define ABS_HAT0Y 0x11
#define ABS_HAT1X 0x12
#define ABS_HAT1Y 0x13
#define ABS_HAT2X 0x14
#define ABS_HAT2Y 0x15
#define ABS_HAT3X 0x16
#define ABS_HAT3Y 0x17
#define ABS_PRESSURE 0x18
#define ABS_DISTANCE 0x19
#define ABS_TILT_X 0x1a
#define ABS_TILT_Y 0x1b
#define ABS_TOOL_WIDTH 0x1c
#define ABS_VOLUME 0x20
#define ABS_MISC 0x28
#define ABS_MT_SLOT 0x2f /* MT slot being modified */
#define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
#define ABS_MT_TOUCH_MINOR 0x31 /* Minor axis (omit if circular) */
#define ABS_MT_WIDTH_MAJOR 0x32 /* Major axis of approaching ellipse */
#define ABS_MT_WIDTH_MINOR 0x33 /* Minor axis (omit if circular) */
#define ABS_MT_ORIENTATION 0x34 /* Ellipse orientation */
#define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
#define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
#define ABS_MT_TOOL_TYPE 0x37 /* Type of touching device */
#define ABS_MT_BLOB_ID 0x38 /* Group a set of packets as a blob */
#define ABS_MT_TRACKING_ID 0x39 /* Unique ID of initiated contact */
#define ABS_MT_PRESSURE 0x3a /* Pressure on contact area */
#define ABS_MT_DISTANCE 0x3b /* Contact hover distance */
#ifdef __KERNEL__
/* Implementation details, userspace should not care about these */
#define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR
#define ABS_MT_LAST ABS_MT_DISTANCE
#endif
#define ABS_MAX 0x3f
#define ABS_CNT (ABS_MAX+1)
/*
* Switch events
*/
#define SW_LID 0x00 /* set = lid shut */
#define SW_TABLET_MODE 0x01 /* set = tablet mode */
#define SW_HEADPHONE_INSERT 0x02 /* set = inserted */
#define SW_RFKILL_ALL 0x03 /* rfkill master switch, type "any"
set = radio enabled */
#define SW_RADIO SW_RFKILL_ALL /* deprecated */
#define SW_MICROPHONE_INSERT 0x04 /* set = inserted */
#define SW_DOCK 0x05 /* set = plugged into dock */
#define SW_LINEOUT_INSERT 0x06 /* set = inserted */
#define SW_JACK_PHYSICAL_INSERT 0x07 /* set = mechanical switch set */
#define SW_VIDEOOUT_INSERT 0x08 /* set = inserted */
#define SW_CAMERA_LENS_COVER 0x09 /* set = lens covered */
#define SW_KEYPAD_SLIDE 0x0a /* set = keypad slide out */
#define SW_FRONT_PROXIMITY 0x0b /* set = front proximity sensor active */
#define SW_ROTATE_LOCK 0x0c /* set = rotate locked/disabled */
#define SW_MAX 0x0f
#define SW_CNT (SW_MAX+1)
/*
* Misc events
*/
#define MSC_SERIAL 0x00
#define MSC_PULSELED 0x01
#define MSC_GESTURE 0x02
#define MSC_RAW 0x03
#define MSC_SCAN 0x04
#define MSC_MAX 0x07
#define MSC_CNT (MSC_MAX+1)
/*
* LEDs
*/
#define LED_NUML 0x00
#define LED_CAPSL 0x01
#define LED_SCROLLL 0x02
#define LED_COMPOSE 0x03
#define LED_KANA 0x04
#define LED_SLEEP 0x05
#define LED_SUSPEND 0x06
#define LED_MUTE 0x07
#define LED_MISC 0x08
#define LED_MAIL 0x09
#define LED_CHARGING 0x0a
#define LED_MAX 0x0f
#define LED_CNT (LED_MAX+1)
/*
* Autorepeat values
*/
#define REP_DELAY 0x00
#define REP_PERIOD 0x01
#define REP_MAX 0x01
#define REP_CNT (REP_MAX+1)
/*
* Sounds
*/
#define SND_CLICK 0x00
#define SND_BELL 0x01
#define SND_TONE 0x02
#define SND_MAX 0x07
#define SND_CNT (SND_MAX+1)
/*
* IDs.
*/
#define ID_BUS 0
#define ID_VENDOR 1
#define ID_PRODUCT 2
#define ID_VERSION 3
#define BUS_PCI 0x01
#define BUS_ISAPNP 0x02
#define BUS_USB 0x03
#define BUS_HIL 0x04
#define BUS_BLUETOOTH 0x05
#define BUS_VIRTUAL 0x06
#define BUS_ISA 0x10
#define BUS_I8042 0x11
#define BUS_XTKBD 0x12
#define BUS_RS232 0x13
#define BUS_GAMEPORT 0x14
#define BUS_PARPORT 0x15
#define BUS_AMIGA 0x16
#define BUS_ADB 0x17
#define BUS_I2C 0x18
#define BUS_HOST 0x19
#define BUS_GSC 0x1A
#define BUS_ATARI 0x1B
#define BUS_SPI 0x1C
/*
* MT_TOOL types
*/
#define MT_TOOL_FINGER 0
#define MT_TOOL_PEN 1
#define MT_TOOL_MAX 1
/*
* Values describing the status of a force-feedback effect
*/
#define FF_STATUS_STOPPED 0x00
#define FF_STATUS_PLAYING 0x01
#define FF_STATUS_MAX 0x01
/*
* Structures used in ioctls to upload effects to a device
* They are pieces of a bigger structure (called ff_effect)
*/
/*
* All duration values are expressed in ms. Values above 32767 ms (0x7fff)
* should not be used and have unspecified results.
*/
/**
* struct ff_replay - defines scheduling of the force-feedback effect
* @length: duration of the effect
* @delay: delay before effect should start playing
*/
struct ff_replay {
__u16 length;
__u16 delay;
};
/**
* struct ff_trigger - defines what triggers the force-feedback effect
* @button: number of the button triggering the effect
* @interval: controls how soon the effect can be re-triggered
*/
struct ff_trigger {
__u16 button;
__u16 interval;
};
/**
* struct ff_envelope - generic force-feedback effect envelope
* @attack_length: duration of the attack (ms)
* @attack_level: level at the beginning of the attack
* @fade_length: duration of fade (ms)
* @fade_level: level at the end of fade
*
* The @attack_level and @fade_level are absolute values; when applying
* envelope force-feedback core will convert to positive/negative
* value based on polarity of the default level of the effect.
* Valid range for the attack and fade levels is 0x0000 - 0x7fff
*/
struct ff_envelope {
__u16 attack_length;
__u16 attack_level;
__u16 fade_length;
__u16 fade_level;
};
/**
* struct ff_constant_effect - defines parameters of a constant force-feedback effect
* @level: strength of the effect; may be negative
* @envelope: envelope data
*/
struct ff_constant_effect {
__s16 level;
struct ff_envelope envelope;
};
/**
* struct ff_ramp_effect - defines parameters of a ramp force-feedback effect
* @start_level: beginning strength of the effect; may be negative
* @end_level: final strength of the effect; may be negative
* @envelope: envelope data
*/
struct ff_ramp_effect {
__s16 start_level;
__s16 end_level;
struct ff_envelope envelope;
};
/**
* struct ff_condition_effect - defines a spring or friction force-feedback effect
* @right_saturation: maximum level when joystick moved all way to the right
* @left_saturation: same for the left side
* @right_coeff: controls how fast the force grows when the joystick moves
* to the right
* @left_coeff: same for the left side
* @deadband: size of the dead zone, where no force is produced
* @center: position of the dead zone
*/
struct ff_condition_effect {
__u16 right_saturation;
__u16 left_saturation;
__s16 right_coeff;
__s16 left_coeff;
__u16 deadband;
__s16 center;
};
/**
* struct ff_periodic_effect - defines parameters of a periodic force-feedback effect
* @waveform: kind of the effect (wave)
* @period: period of the wave (ms)
* @magnitude: peak value
* @offset: mean value of the wave (roughly)
* @phase: 'horizontal' shift
* @envelope: envelope data
* @custom_len: number of samples (FF_CUSTOM only)
* @custom_data: buffer of samples (FF_CUSTOM only)
*
* Known waveforms - FF_SQUARE, FF_TRIANGLE, FF_SINE, FF_SAW_UP,
* FF_SAW_DOWN, FF_CUSTOM. The exact syntax FF_CUSTOM is undefined
* for the time being as no driver supports it yet.
*
* Note: the data pointed by custom_data is copied by the driver.
* You can therefore dispose of the memory after the upload/update.
*/
struct ff_periodic_effect {
__u16 waveform;
__u16 period;
__s16 magnitude;
__s16 offset;
__u16 phase;
struct ff_envelope envelope;
__u32 custom_len;
__s16 __user *custom_data;
};
/**
* struct ff_rumble_effect - defines parameters of a periodic force-feedback effect
* @strong_magnitude: magnitude of the heavy motor
* @weak_magnitude: magnitude of the light one
*
* Some rumble pads have two motors of different weight. Strong_magnitude
* represents the magnitude of the vibration generated by the heavy one.
*/
struct ff_rumble_effect {
__u16 strong_magnitude;
__u16 weak_magnitude;
};
/**
* struct ff_effect - defines force feedback effect
* @type: type of the effect (FF_CONSTANT, FF_PERIODIC, FF_RAMP, FF_SPRING,
* FF_FRICTION, FF_DAMPER, FF_RUMBLE, FF_INERTIA, or FF_CUSTOM)
* @id: an unique id assigned to an effect
* @direction: direction of the effect
* @trigger: trigger conditions (struct ff_trigger)
* @replay: scheduling of the effect (struct ff_replay)
* @u: effect-specific structure (one of ff_constant_effect, ff_ramp_effect,
* ff_periodic_effect, ff_condition_effect, ff_rumble_effect) further
* defining effect parameters
*
* This structure is sent through ioctl from the application to the driver.
* To create a new effect application should set its @id to -1; the kernel
* will return assigned @id which can later be used to update or delete
* this effect.
*
* Direction of the effect is encoded as follows:
* 0 deg -> 0x0000 (down)
* 90 deg -> 0x4000 (left)
* 180 deg -> 0x8000 (up)
* 270 deg -> 0xC000 (right)
*/
struct ff_effect {
__u16 type;
__s16 id;
__u16 direction;
struct ff_trigger trigger;
struct ff_replay replay;
union {
struct ff_constant_effect constant;
struct ff_ramp_effect ramp;
struct ff_periodic_effect periodic;
struct ff_condition_effect condition[2]; /* One for each axis */
struct ff_rumble_effect rumble;
} u;
};
/*
* Force feedback effect types
*/
#define FF_RUMBLE 0x50
#define FF_PERIODIC 0x51
#define FF_CONSTANT 0x52
#define FF_SPRING 0x53
#define FF_FRICTION 0x54
#define FF_DAMPER 0x55
#define FF_INERTIA 0x56
#define FF_RAMP 0x57
#define FF_EFFECT_MIN FF_RUMBLE
#define FF_EFFECT_MAX FF_RAMP
/*
* Force feedback periodic effect types
*/
#define FF_SQUARE 0x58
#define FF_TRIANGLE 0x59
#define FF_SINE 0x5a
#define FF_SAW_UP 0x5b
#define FF_SAW_DOWN 0x5c
#define FF_CUSTOM 0x5d
#define FF_WAVEFORM_MIN FF_SQUARE
#define FF_WAVEFORM_MAX FF_CUSTOM
/*
* Set ff device properties
*/
#define FF_GAIN 0x60
#define FF_AUTOCENTER 0x61
#define FF_MAX 0x7f
#define FF_CNT (FF_MAX+1)
#ifdef __KERNEL__
/*
* In-kernel definitions.
*/
#include
#include
#include
#include
/**
* struct input_dev - represents an input device
* @name: name of the device
* @phys: physical path to the device in the system hierarchy
* @uniq: unique identification code for the device (if device has it)
* @id: id of the device (struct input_id)
* @propbit: bitmap of device properties and quirks
* @evbit: bitmap of types of events supported by the device (EV_KEY,
* EV_REL, etc.)
* @keybit: bitmap of keys/buttons this device has
* @relbit: bitmap of relative axes for the device
* @absbit: bitmap of absolute axes for the device
* @mscbit: bitmap of miscellaneous events supported by the device
* @ledbit: bitmap of leds present on the device
* @sndbit: bitmap of sound effects supported by the device
* @ffbit: bitmap of force feedback effects supported by the device
* @swbit: bitmap of switches present on the device
* @hint_events_per_packet: average number of events generated by the
* device in a packet (between EV_SYN/SYN_REPORT events). Used by
* event handlers to estimate size of the buffer needed to hold
* events.
* @keycodemax: size of keycode table
* @keycodesize: size of elements in keycode table
* @keycode: map of scancodes to keycodes for this device
* @getkeycode: optional legacy method to retrieve current keymap.
* @setkeycode: optional method to alter current keymap, used to implement
* sparse keymaps. If not supplied default mechanism will be used.
* The method is being called while holding event_lock and thus must
* not sleep
* @ff: force feedback structure associated with the device if device
* supports force feedback effects
* @repeat_key: stores key code of the last key pressed; used to implement
* software autorepeat
* @timer: timer for software autorepeat
* @rep: current values for autorepeat parameters (delay, rate)
* @mt: pointer to array of struct input_mt_slot holding current values
* of tracked contacts
* @mtsize: number of MT slots the device uses
* @slot: MT slot currently being transmitted
* @trkid: stores MT tracking ID for the current contact
* @absinfo: array of &struct input_absinfo elements holding information
* about absolute axes (current value, min, max, flat, fuzz,
* resolution)
* @key: reflects current state of device's keys/buttons
* @led: reflects current state of device's LEDs
* @snd: reflects current state of sound effects
* @sw: reflects current state of device's switches
* @open: this method is called when the very first user calls
* input_open_device(). The driver must prepare the device
* to start generating events (start polling thread,
* request an IRQ, submit URB, etc.)
* @close: this method is called when the very last user calls
* input_close_device().
* @flush: purges the device. Most commonly used to get rid of force
* feedback effects loaded into the device when disconnecting
* from it
* @event: event handler for events sent _to_ the device, like EV_LED
* or EV_SND. The device is expected to carry out the requested
* action (turn on a LED, play sound, etc.) The call is protected
* by @event_lock and must not sleep
* @grab: input handle that currently has the device grabbed (via
* EVIOCGRAB ioctl). When a handle grabs a device it becomes sole
* recipient for all input events coming from the device
* @event_lock: this spinlock is is taken when input core receives
* and processes a new event for the device (in input_event()).
* Code that accesses and/or modifies parameters of a device
* (such as keymap or absmin, absmax, absfuzz, etc.) after device
* has been registered with input core must take this lock.
* @mutex: serializes calls to open(), close() and flush() methods
* @users: stores number of users (input handlers) that opened this
* device. It is used by input_open_device() and input_close_device()
* to make sure that dev->open() is only called when the first
* user opens device and dev->close() is called when the very
* last user closes the device
* @going_away: marks devices that are in a middle of unregistering and
* causes input_open_device*() fail with -ENODEV.
* @sync: set to %true when there were no new events since last EV_SYN
* @dev: driver model's view of this device
* @h_list: list of input handles associated with the device. When
* accessing the list dev->mutex must be held
* @node: used to place the device onto input_dev_list
*/
struct input_dev {
const char *name;
const char *phys;
const char *uniq;
struct input_id id;
unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];
unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];
unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
unsigned long swbit[BITS_TO_LONGS(SW_CNT)];
unsigned int hint_events_per_packet;
unsigned int keycodemax;
unsigned int keycodesize;
void *keycode;
int (*setkeycode)(struct input_dev *dev,
const struct input_keymap_entry *ke,
unsigned int *old_keycode);
int (*getkeycode)(struct input_dev *dev,
struct input_keymap_entry *ke);
struct ff_device *ff;
unsigned int repeat_key;
struct timer_list timer;
int rep[REP_CNT];
struct input_mt_slot *mt;
int mtsize;
int slot;
int trkid;
struct input_absinfo *absinfo;
unsigned long key[BITS_TO_LONGS(KEY_CNT)];
unsigned long led[BITS_TO_LONGS(LED_CNT)];
unsigned long snd[BITS_TO_LONGS(SND_CNT)];
unsigned long sw[BITS_TO_LONGS(SW_CNT)];
int (*open)(struct input_dev *dev);
void (*close)(struct input_dev *dev);
int (*flush)(struct input_dev *dev, struct file *file);
int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);
struct input_handle __rcu *grab;
spinlock_t event_lock;
struct mutex mutex;
unsigned int users;
bool going_away;
bool sync;
struct device dev;
struct list_head h_list;
struct list_head node;
};
#define to_input_dev(d) container_of(d, struct input_dev, dev)
/*
* Verify that we are in sync with input_device_id mod_devicetable.h #defines
*/
#if EV_MAX != INPUT_DEVICE_ID_EV_MAX
#error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match"
#endif
#if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING
#error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match"
#endif
#if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX
#error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match"
#endif
#if REL_MAX != INPUT_DEVICE_ID_REL_MAX
#error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match"
#endif
#if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX
#error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match"
#endif
#if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX
#error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match"
#endif
#if LED_MAX != INPUT_DEVICE_ID_LED_MAX
#error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match"
#endif
#if SND_MAX != INPUT_DEVICE_ID_SND_MAX
#error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match"
#endif
#if FF_MAX != INPUT_DEVICE_ID_FF_MAX
#error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match"
#endif
#if SW_MAX != INPUT_DEVICE_ID_SW_MAX
#error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match"
#endif
#define INPUT_DEVICE_ID_MATCH_DEVICE \
(INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT)
#define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
(INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION)
struct input_handle;
/**
* struct input_handler - implements one of interfaces for input devices
* @private: driver-specific data
* @event: event handler. This method is being called by input core with
* interrupts disabled and dev->event_lock spinlock held and so
* it may not sleep
* @filter: similar to @event; separates normal event handlers from
* "filters".
* @match: called after comparing device's id with handler's id_table
* to perform fine-grained matching between device and handler
* @connect: called when attaching a handler to an input device
* @disconnect: disconnects a handler from input device
* @start: starts handler for given handle. This function is called by
* input core right after connect() method and also when a process
* that "grabbed" a device releases it
* @fops: file operations this driver implements
* @minor: beginning of range of 32 minors for devices this driver
* can provide
* @name: name of the handler, to be shown in /proc/bus/input/handlers
* @id_table: pointer to a table of input_device_ids this driver can
* handle
* @h_list: list of input handles associated with the handler
* @node: for placing the driver onto input_handler_list
*
* Input handlers attach to input devices and create input handles. There
* are likely several handlers attached to any given input device at the
* same time. All of them will get their copy of input event generated by
* the device.
*
* The very same structure is used to implement input filters. Input core
* allows filters to run first and will not pass event to regular handlers
* if any of the filters indicate that the event should be filtered (by
* returning %true from their filter() method).
*
* Note that input core serializes calls to connect() and disconnect()
* methods.
*/
struct input_handler {
void *private;
void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
const struct file_operations *fops;
int minor;
const char *name;
const struct input_device_id *id_table;
struct list_head h_list;
struct list_head node;
};
/**
* struct input_handle - links input device with an input handler
* @private: handler-specific data
* @open: counter showing whether the handle is 'open', i.e. should deliver
* events from its device
* @name: name given to the handle by handler that created it
* @dev: input device the handle is attached to
* @handler: handler that works with the device through this handle
* @d_node: used to put the handle on device's list of attached handles
* @h_node: used to put the handle on handler's list of handles from which
* it gets events
*/
struct input_handle {
void *private;
int open;
const char *name;
struct input_dev *dev;
struct input_handler *handler;
struct list_head d_node;
struct list_head h_node;
};
struct input_dev *input_allocate_device(void);
void input_free_device(struct input_dev *dev);
static inline struct input_dev *input_get_device(struct input_dev *dev)
{
return dev ? to_input_dev(get_device(&dev->dev)) : NULL;
}
static inline void input_put_device(struct input_dev *dev)
{
if (dev)
put_device(&dev->dev);
}
static inline void *input_get_drvdata(struct input_dev *dev)
{
return dev_get_drvdata(&dev->dev);
}
static inline void input_set_drvdata(struct input_dev *dev, void *data)
{
dev_set_drvdata(&dev->dev, data);
}
int __must_check input_register_device(struct input_dev *);
void input_unregister_device(struct input_dev *);
void input_reset_device(struct input_dev *);
int __must_check input_register_handler(struct input_handler *);
void input_unregister_handler(struct input_handler *);
int input_handler_for_each_handle(struct input_handler *, void *data,
int (*fn)(struct input_handle *, void *));
int input_register_handle(struct input_handle *);
void input_unregister_handle(struct input_handle *);
int input_grab_device(struct input_handle *);
void input_release_device(struct input_handle *);
int input_open_device(struct input_handle *);
void input_close_device(struct input_handle *);
int input_flush_device(struct input_handle *handle, struct file *file);
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value);
static inline void input_report_key(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_KEY, code, !!value);
}
static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_REL, code, value);
}
static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_ABS, code, value);
}
static inline void input_report_ff_status(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_FF_STATUS, code, value);
}
static inline void input_report_switch(struct input_dev *dev, unsigned int code, int value)
{
input_event(dev, EV_SW, code, !!value);
}
static inline void input_sync(struct input_dev *dev)
{
input_event(dev, EV_SYN, SYN_REPORT, 0);
}
static inline void input_mt_sync(struct input_dev *dev)
{
input_event(dev, EV_SYN, SYN_MT_REPORT, 0);
}
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code);
/**
* input_set_events_per_packet - tell handlers about the driver event rate
* @dev: the input device used by the driver
* @n_events: the average number of events between calls to input_sync()
*
* If the event rate sent from a device is unusually large, use this
* function to set the expected event rate. This will allow handlers
* to set up an appropriate buffer size for the event stream, in order
* to minimize information loss.
*/
static inline void input_set_events_per_packet(struct input_dev *dev, int n_events)
{
dev->hint_events_per_packet = n_events;
}
void input_alloc_absinfo(struct input_dev *dev);
void input_set_abs_params(struct input_dev *dev, unsigned int axis,
int min, int max, int fuzz, int flat);
#define INPUT_GENERATE_ABS_ACCESSORS(_suffix, _item) \
static inline int input_abs_get_##_suffix(struct input_dev *dev, \
unsigned int axis) \
{ \
return dev->absinfo ? dev->absinfo[axis]._item : 0; \
} \
\
static inline void input_abs_set_##_suffix(struct input_dev *dev, \
unsigned int axis, int val) \
{ \
input_alloc_absinfo(dev); \
if (dev->absinfo) \
dev->absinfo[axis]._item = val; \
}
INPUT_GENERATE_ABS_ACCESSORS(val, value)
INPUT_GENERATE_ABS_ACCESSORS(min, minimum)
INPUT_GENERATE_ABS_ACCESSORS(max, maximum)
INPUT_GENERATE_ABS_ACCESSORS(fuzz, fuzz)
INPUT_GENERATE_ABS_ACCESSORS(flat, flat)
INPUT_GENERATE_ABS_ACCESSORS(res, resolution)
int input_scancode_to_scalar(const struct input_keymap_entry *ke,
unsigned int *scancode);
int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke);
int input_set_keycode(struct input_dev *dev,
const struct input_keymap_entry *ke);
extern struct class input_class;
/**
* struct ff_device - force-feedback part of an input device
* @upload: Called to upload an new effect into device
* @erase: Called to erase an effect from device
* @playback: Called to request device to start playing specified effect
* @set_gain: Called to set specified gain
* @set_autocenter: Called to auto-center device
* @destroy: called by input core when parent input device is being
* destroyed
* @private: driver-specific data, will be freed automatically
* @ffbit: bitmap of force feedback capabilities truly supported by
* device (not emulated like ones in input_dev->ffbit)
* @mutex: mutex for serializing access to the device
* @max_effects: maximum number of effects supported by device
* @effects: pointer to an array of effects currently loaded into device
* @effect_owners: array of effect owners; when file handle owning
* an effect gets closed the effect is automatically erased
*
* Every force-feedback device must implement upload() and playback()
* methods; erase() is optional. set_gain() and set_autocenter() need
* only be implemented if driver sets up FF_GAIN and FF_AUTOCENTER
* bits.
*
* Note that playback(), set_gain() and set_autocenter() are called with
* dev->event_lock spinlock held and interrupts off and thus may not
* sleep.
*/
struct ff_device {
int (*upload)(struct input_dev *dev, struct ff_effect *effect,
struct ff_effect *old);
int (*erase)(struct input_dev *dev, int effect_id);
int (*playback)(struct input_dev *dev, int effect_id, int value);
void (*set_gain)(struct input_dev *dev, u16 gain);
void (*set_autocenter)(struct input_dev *dev, u16 magnitude);
void (*destroy)(struct ff_device *);
void *private;
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
struct mutex mutex;
int max_effects;
struct ff_effect *effects;
struct file *effect_owners[];
};
int input_ff_create(struct input_dev *dev, int max_effects);
void input_ff_destroy(struct input_dev *dev);
int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file);
int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file);
int input_ff_create_memless(struct input_dev *dev, void *data,
int (*play_effect)(struct input_dev *, void *, struct ff_effect *));
#endif
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Linux模拟鼠标和键盘事件的方法
1、在内核中实现一个虚拟的驱动程序,接收应用层数据,使用输入子系统的接口函数input_report_key()向内核inputcore投递事件。
2、直接向/dev/input/event*写入structinput_event值。
现在看一下linu/input.h这个文件中定义的结构本及按键编码值以及所支持的ioctl()命令
structinput_event {
structtimeval time; //按键时间
__u16type; //类型,在下面有定义
__u16code; //要模拟成什么按键
__s32value;//是按下还是释放
};
code:
事件的代码.如果事件的类型代码是EV_KEY,该代码code为设备键盘代码.代码植0~127为键盘上的按键代码,0x110~0x116 为鼠标上按键代码,其中0x110(BTN_LEFT)为鼠标左键,0x111(BTN_RIGHT)为鼠标右键,0x112(BTN_MIDDLE)为鼠标中键.其它代码含义请参看include/linux/input.h文件.如果事件的类型代码是EV_REL,code值表示轨迹的类型.如指示鼠标的X轴方向REL_X(代码为0x00),指示鼠标的Y轴方向REL_Y(代码为0x01),指示鼠标中轮子方向REL_WHEEL(代码为0x08).
type:
EV_KEY,键盘
EV_REL,相对坐标
EV_ABS,绝对坐标
value:
事件的值.如果事件的类型代码是EV_KEY,当按键按下时值为1,松开时值为0;如果事件的类型代码是EV_REL,value的正数值和负数值分别代表两个不同方向的值.
/*
*Event types
/
#defineEV_SYN 0x00
#defineEV_KEY 0x01 //按键
#defineEV_REL 0x02 //相对坐标(轨迹球)
#defineEV_ABS 0x03 //绝对坐标
#defineEV_MSC 0x04 //其他
#defineEV_SW 0x05
#defineEV_LED 0x11 //LED
#defineEV_SND 0x12//声音
#defineEV_REP 0x14//repeat
#defineEV_FF 0x15
#defineEV_PWR 0x16
#defineEV_FF_STATUS 0x17
#defineEV_MAX 0x1f
#defineEV_CNT (EV_MAX+1)
下面是一个模拟鼠标和键盘输入的例子:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
voidsimulate_key(int fd,int kval)
{
structinput_event event;
event.type= EV_KEY; 键盘事件
event.value= 1;按键按下
event.code= kval;
gettimeofday(&event.time,0);
write(fd,&event,sizeof(event));//写入到/dev/input/event中。
event.type= EV_SYN; 这里的同步,相当于刷新吧?
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
memset(&event,0, sizeof(event));
gettimeofday(&event.time,NULL);
event.type= EV_KEY; 键盘事件
event.code= kval;
event.value= 0; 按键松开
write(fd,&event, sizeof(event));
event.type= EV_SYN; 再次刷新一下?
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
}
voidsimulate_mouse(int fd)
{
structinput_event event;
memset(&event,0, sizeof(event));
gettimeofday(&event.time,NULL);
event.type= EV_REL; 轨迹球事件(鼠标事件)
event.code= REL_X; 轨迹球x值
event.value= 10; 具体的值
write(fd,&event, sizeof(event));写入到设备结点,传到驱动程序中。
event.type= EV_REL; 轨迹球事件(鼠标事件)
event.code= REL_Y; 轨迹球y值
event.value= 10; 具体的值
write(fd,&event, sizeof(event)); 传给驱动
event.type= EV_SYN; 同步一下。
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
}
intmain()
{
intfd_kbd;
intfd_mouse;
键盘事件,设备节点
fd_kbd= open("/dev/input/event1",O_RDWR);
if(fd_kbd<=0){
printf("erroropen keyboard:/n");
return-1;
}
鼠标事件,设备节点
fd_mouse= open("/dev/input/event2",O_RDWR);
if(fd_mouse<=0){
printf("erroropen mouse/n");
return-2;
}
inti = 0;
for(i=0;i< 10; i++)
{
simulate_key(fd_kbd,KEY_A + i);
simulate_mouse(fd_mouse);
sleep(1);
}
close(fd_kbd);
}
模拟了鼠标和键盘的输入事件。
关于这里open哪个event,可以通过 cat/proc/bus/input/devices
I:Bus=0017 Vendor=0001 Product=0001 Version=0100
N:Name="Macintosh mouse button emulation"
P:Phys=
S:Sysfs=/class/input/input0
U:Uniq=
H:Handlers=mouse0 event0
B:EV=7
B:KEY=70000 0 0 0 0 0 0 0 0
B:REL=3
I:Bus=0011 Vendor=0001 Product=0001 Version=ab41
N:Name="AT Translated Set 2 keyboard"
P:Phys=isa0060/serio0/input0
S:Sysfs=/class/input/input1
U:Uniq=
H:Handlers=kbd event1
B:EV=120013
B:KEY=4 2000000 3803078 f800d001 feffffdf ffefffff ffffffff fffffffe
B:MSC=10
B:LED=7
I:Bus=0019 Vendor=0000 Product=0002 Version=0000
N:Name="Power Button (FF)"
P:Phys=LNXPWRBN/button/input0
S:Sysfs=/class/input/input3
U:Uniq=
H:Handlers=kbd event3
B:EV=3
B:KEY=100000 0 0 0
I:Bus=0019 Vendor=0000 Product=0001 Version=0000
N:Name="Power Button (CM)"
P:Phys=PNP0C0C/button/input0
S:Sysfs=/class/input/input4
U:Uniq=
H:Handlers=kbd event4
B:EV=3
B:KEY=100000 0 0 0
I:Bus=0003 Vendor=046d Product=c018 Version=0111
N:Name="Logitech USB Optical Mouse"
P:Phys=usb-0000:00:1d.1-2/input0
S:Sysfs=/class/input/input24
U:Uniq=
H:Handlers=mouse1 event2
B:EV=7
B:KEY=70000 0 0 0 0 0 0 0 0
B:REL=103
下面是一个读取鼠标和键盘事件的例子:
#include
#include
#include
#include
#include
#include
#include
#include
staticvoid show_event(struct input_event* event)
{
printf("%d%d %d/n", event->type, event->code, event->value);
return;
}
intmain(int argc, char* argv[])
{
structinput_event event = {{0}, 0};
constchar* file_name = argc == 2 ? argv[1] : "/dev/input/event2";
intfd = open(file_name, O_RDWR);
if(fd> 0)
{
while(1)
{
intret = read(fd, &event,sizeof(event));读取事件!
if(ret== sizeof(event))
{
show_event(&event);
}
else
{
break;
}
}
close(fd);
}
return0;
}
模拟CTRL+ SPACE组合按键
voidsimulate_ctrl_space(int fd)
{
structinput_event event;
//先发送一个CTRL按下去的事件。
event.type= EV_KEY;
event.value= 1; 按键按下
event.code= KEY_LEFTCTRL;
gettimeofday(&event.time,0);
write(fd,&event,sizeof(event));
event.type= EV_SYN;
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
//先发送一个SPACE按下去的事件。
event.type= EV_KEY;
event.value= 1; 按键按下
event.code= KEY_SPACE;
gettimeofday(&event.time,0);
write(fd,&event,sizeof(event));
//发送一个释放 SPACE的事件
memset(&event,0, sizeof(event));
gettimeofday(&event.time,NULL);
event.type= EV_KEY;
event.code= KEY_SPACE;
event.value= 0;按键松开
write(fd,&event, sizeof(event));
event.type= EV_SYN;
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
//发送一个释放 CTRL的事件
memset(&event,0, sizeof(event));
gettimeofday(&event.time,NULL);
event.type= EV_KEY;
event.code= KEY_LEFTCTRL;
event.value= 0; 按键松开
write(fd,&event, sizeof(event));
event.type= EV_SYN;
event.code= SYN_REPORT;
event.value= 0;
write(fd,&event, sizeof(event));
}
接下来分析一下uinput和linux的input子系统。
linuxuinput
本文以2.6.22.7的kernel为基础。
首先uinput是一个字符设备,其次它还是一个 input设备。另外它可以是一个鼠标或者键盘设备。
从init部分说起吧。
staticconst struct file_operations uinput_fops = {
.owner = THIS_MODULE,
.open = uinput_open,
.release = uinput_release,
.read = uinput_read,
.write = uinput_write,
.poll = uinput_poll,
.unlocked_ioctl = uinput_ioctl,
};
staticstruct miscdevice uinput_misc = {
.fops = &uinput_fops,
.minor = UINPUT_MINOR,
.name = UINPUT_NAME,
};
staticint __init uinput_init(void)
{
returnmisc_register(&uinput_misc);
}
首先说说miscdevice,很方便的东西,对device做了简单的包装,
当misc_register的时候就完成了设备的 注册安装一类的东东, 不用自己再操心了。真是懒人的设计阿。
所有的misc设备公用同一个主设备号,在misc_init中,
staticint __init misc_init(void)
{
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *ent;
ent =create_proc_entry("misc", 0, NULL);
if (ent)
ent->proc_fops =&misc_proc_fops;
#endif
misc_class =class_create(THIS_MODULE, "misc");
if(IS_ERR(misc_class))
returnPTR_ERR(misc_class);
if(register_chrdev(MISC_MAJOR,"misc",&misc_fops)) {
printk("unable to get major %d for miscdevices/n",
MISC_MAJOR);
class_destroy(misc_class);
return -EIO;
}
return0;
}
register_chrdev 接口真BT,
__register_chrdev_region(major, 0, 256, name);
直接占用了0到255的次设备号,注册misc类型设备的时候,直接从里面取就是了。
而在misc_open通过设备节点把file_operations指向对应的设备驱动上去,很良好的设计, 呵呵。
有点类似其他总线的设计,但是只有 device_list,没有driver_list,当然也不需要。
不在misc上浪费时间了。接下来再到 uinput中去。
从uinput_open说起吧,uinput_open其实啥事情都没干。。做了一些简单的初始化工作。
要创建一个input设备,我们在调用input_register_device前需要设置好input_dev的各种属性。
而设置input_dev的属性在uinput_setup_device接口中,但驱动怎么知道你想模拟什么设备呢?
又需要通过uinput_ioctl设置先。很糟糕的设计。 用户若是不知道这些流程,如何能使用这个模拟驱动?
下面是一个使用uinput的用户态程序:
intsetup_uinput_device(char *device)
{
// Temporary variable
int i=0;
// Open the input device
//uinp_fd = open("/dev/input/uinput", O_WRONLY |O_NDELAY);
uinp_fd = open(device, O_WRONLY | O_NDELAY);
if (uinp_fd == 0)
{
printf("Unable to open/dev/input/uinput/n");
return -1;
}
memset(&uinp,0,sizeof(uinp)); // Intialize the uInput device toNULL
strncpy(uinp.name, "HID Keyboard Device", strlen("HIDKeyboard Device"));
uinp.id.version = 4;
uinp.id.bustype = BUS_USB;
uinp.id.product = 1;
uinp.id.vendor = 1;
// Setup the uinput device
ioctl(uinp_fd, UI_SET_EVBIT, EV_KEY);
ioctl(uinp_fd, UI_SET_EVBIT, EV_REL);
ioctl(uinp_fd,UI_SET_RELBIT, REL_X);
ioctl(uinp_fd, UI_SET_RELBIT, REL_Y);
for (i=0; i < 256; i++){
ioctl(uinp_fd, UI_SET_KEYBIT, i);
}
ioctl(uinp_fd, UI_SET_KEYBIT, BTN_MOUSE);
ioctl(uinp_fd, UI_SET_KEYBIT,BTN_TOUCH);
ioctl(uinp_fd, UI_SET_KEYBIT, BTN_MOUSE);
ioctl(uinp_fd, UI_SET_KEYBIT,BTN_LEFT);
ioctl(uinp_fd, UI_SET_KEYBIT, BTN_MIDDLE);
ioctl(uinp_fd, UI_SET_KEYBIT,BTN_RIGHT);
ioctl(uinp_fd, UI_SET_KEYBIT, BTN_FORWARD);
ioctl(uinp_fd, UI_SET_KEYBIT,BTN_BACK);
write(uinp_fd, &uinp, sizeof(uinp));
if (ioctl(uinp_fd, UI_DEV_CREATE))
{
printf("Unable to create UINPUT device.");
return -1;
}
return 1;
}
很变态的流程,先用 ioctl设置参数(模拟鼠标,键盘),再 write,在第一次write的时候创建inputdev,
然后ioctl调用UI_DEV_CREATE向系统注册.BT............
今天先写到这里拉。。
浅析
linux
下键盘设备工作和注册流程
【浅析linux下鼠标驱动的实现】
input_init
(
)
=
>
=
>
class_register
(
&
input_class
)
;
注册
input
类
input_proc_init
(
)
;
创建
proc
下的目录和文件
register_chrdev
(
INPUT_MAJOR
,
"input"
,
&
input_fops
)
;
注册驱动程序到
cdev_map
上
,
以待驱动设备
.
drivers/input/keyboard/pxa3xx_keypad
.
c
为我们的
keyboard
设备
,
pxa3xx_keypad_probe
=
>
request_irq
(
IRQ_ENHROT
,
&
enhanced_rotary_interrupt
,
IRQF_DISABLED
,
"EnhancedRotary"
,
(
void
*
)
keypad
)
;
注册快捷键中断
request_irq
(
IRQ_KEYPAD
,
pxa3xx_keypad_interrupt
,
IRQF_DISABLED
,
pdev
-
>
name
,
keypad
)
;
注册中断
static
irqreturn_tpxa3xx_keypad_interrupt
(
int
irq
,
void
*
dev_id
)
{
struct
pxa3xx_keypad
*
keypad
=
dev_id
;
uint32_t
kpc
=
keypad_readl
(
KPC
)
;
if
(
kpc
&
KPC_MI
)
pxa3xx_keypad_scan_matrix
(
keypad
)
;
if
(
kpc
&
KPC_DI
)
pxa3xx_keypad_scan_direct
(
keypad
)
;
return
IRQ_HANDLED
;
}
在
irq
中如果读到了
key
,
那么会直接调用
input_report_key
(
keypad
-
>
input_dev
,
lookup_matrix_keycode
(
keypad
,
row
,
col
)
,
new_state
[
col
]
&
(
1
<
<
row
)
)
;
static
inline
unsigned
int
lookup_matrix_keycode
(
struct
pxa3xx_keypad
*
keypad
,
int
row
,
int
col
)
{
return
keypad
-
>
matrix_keycodes
[
(
row
<
<
3
)
+
col
]
;
}
input_report_key
(
struct
input_dev
*
dev
,
unsigned
int
code
,
int
value
)
dev
为
input_dev
设备
,
我们的
4
*
4
键盘
code
为标准
PC
键盘码值
value
为按键动作
,
为
1
表示键盘按下
,
为
0
表示按键抬起
static
inline
void
input_report_key
(
struct
input_dev
*
dev
,
unsigned
int
code
,
int
value
)
{
input_event
(
dev
,
EV_KEY
,
code
,
!
!
value
)
;
}
void
input_event
(
struct
input_dev
*
dev
,
unsigned
int
type
,
unsigned
int
code
,
int
value
)
{
unsigned
long
flags
;
if
(
is_event_supported
(
type
,
dev
-
>
evbit
,
EV_MAX
)
)
{
spin_lock_irqsave
(
&
dev
-
>
event_lock
,
flags
)
;
add_input_randomness
(
type
,
code
,
value
)
;
//
因为按键的存在随机性
,
所以按键是给系统提供墒随机数的好来源
.
input_handle_event
(
dev
,
type
,
code
,
value
)
;
spin_unlock_irqrestore
(
&
dev
-
>
event_lock
,
flags
)
;
}
}
static
void
input_handle_event
(
struct
input_dev
*
dev
,
unsigned
int
type
,
unsigned
int
code
,
int
value
)
{
.
.
.
case
EV_KEY
:
if
(
is_event_supported
(
code
,
dev
-
>
keybit
,
KEY_MAX
)
&
&
!
!
test_bit
(
code
,
dev
-
>
key
)
!
=
value
)
{
//
这次来的是否为新的键值
if
(
value
!
=
2
)
{
__change_bit
(
code
,
dev
-
>
key
)
;
//
通过异或
^
操作
,
反转
code
对应的
bitmap,
如果
value
等于
2,
那么将忽略该按键
if
(
value
)
input_start_autorepeat
(
dev
,
code
)
;
//
键盘按下
,
那么开启定时检测
,
这样可以出现连续输入的效果
}
disposition
=
INPUT_PASS_TO_HANDLERS
;
}
break
;
.
.
.
}
static
void
input_start_autorepeat
(
struct
input_dev
*
dev
,
int
code
)
{
if
(
test_bit
(
EV_REP
,
dev
-
>
evbit
)
&
&
dev
-
>
rep
[
REP_PERIOD
]
&
&
dev
-
>
rep
[
REP_DELAY
]
&
&
dev
-
>
timer
.
data
)
{
dev
-
>
repeat_key
=
code
;
mod_timer
(
&
dev
-
>
timer
,
//
重新启动定时器
input_repeat_key,
时间间隔
msecs_to_jiffies(dev->rep[REP_DELAY])
jiffies
+
msecs_to_jiffies
(
dev
-
>
rep
[
REP_DELAY
]
)
)
;
}
}
static
void
input_repeat_key
(
unsigned
long
data
)
{
struct
input_dev
*
dev
=
(
void
*
)
data
;
unsigned
long
flags
;
spin_lock_irqsave
(
&
dev
-
>
event_lock
,
flags
)
;
if
(
test_bit
(
dev
-
>
repeat_key
,
dev
-
>
key
)
&
&
is_event_supported
(
dev
-
>
repeat_key
,
dev
-
>
keybit
,
KEY_MAX
)
)
{
input_pass_event
(
dev
,
EV_KEY
,
dev
-
>
repeat_key
,
2
)
;
//
交给处理按键函数
if
(
dev
-
>
sync
)
{
/*
* Only send SYN_REPORT if we are not in a middle
* of driver parsing a new hardware packet.
* Otherwise assume that the driver will send
* SYN_REPORT once it's done.
*/
input_pass_event
(
dev
,
EV_SYN
,
SYN_REPORT
,
1
)
;
}
if
(
dev
-
>
rep
[
REP_PERIOD
]
)
mod_timer
(
&
dev
-
>
timer
,
jiffies
+
msecs_to_jiffies
(
dev
-
>
rep
[
REP_PERIOD
]
)
)
;
}
spin_unlock_irqrestore
(
&
dev
-
>
event_lock
,
flags
)
;
}
input_pass_event
=
>
handle
-
>
handler
-
>
event
(
handle
,
type
,
code
,
value
)
;
就是
kbd_handler
的
kbd_event
=
>
kbd_keycode
=
>
atomic_notifier_call_chain
(
&
keyboard_notifier_list
,
KBD_UNICODE
,
&
param
)
通知挂在
keyboard
链上所有等待键盘输入的应用程序
,
通过
register_keyboard_notifier
(
)
函数可以注册到键盘链上【
gliethttp
.
Leith
】
,
input_dev
=
input_allocate_device
(
)
;
申请一个
input
设备空间
input_dev
-
>
open
=
pxa3xx_keypad_open
;
给这个空间填充方法
input_dev
-
>
close
=
pxa3xx_keypad_close
;
input_dev
-
>
private
=
keypad
;
set_bit
(
EV_KEY
,
input_dev
-
>
evbit
)
;
//
键按下
set_bit
(
EV_REL
,
input_dev
-
>
evbit
)
;
//
键释放
pxa3xx_keypad_build_keycode
(
keypad
)
;
//
设备键盘映射码
该函数将根据
pxa3xx_device_keypad
设备下的
matrix_key_map
进行键控设置
,
pxa_set_keypad_info
(
&
jades_keypad_info
)
=
>
将
jades_keypad_info
登记为
pdata
;
#
define
MAX_MATRIX_KEY_NUM
(
8
*
8
)
matrix_keycodes
[
MAX_MATRIX_KEY_NUM
]
;
表示为
8
*
8
键盘
keypad
-
>
matrix_keycodes
[
(
row
<
<
3
)
+
col
]
=
code
;
表示第
row
行的第
col
列处按键
,
代表
code
编码值
,
这个为我们内部使用
.
set_bit
(
code
,
input_dev
-
>
keybit
)
;
//
设置
code
为我们的键盘对操作系统可用的键盘值
if
(
pdata
-
>
direct_key_num
)
{
for
(
i
=
0
;
i
<
pdata
-
>
direct_key_num
;
i
+
+
)
{
set_bit
(
pdata
-
>
direct_key_map
[
i
]
,
input_dev
-
>
keybit
)
;
//
快捷键单元
}
}
set_bit
(
KEY_POWER
,
input_dev
-
>
keybit
)
;
//
登记电源按键为系统可见按键
input_register_device
(
input_dev
)
;
=
>
//
注册设该备
devices_subsys
总线上
int
input_register_device
(
struct
input_dev
*
dev
)
{
static
atomic_tinput_no
=
ATOMIC_INIT
(
0
)
;
struct
input_handler
*
handler
;
const
char
*
path
;
int
error
;
__set_bit
(
EV_SYN
,
dev
-
>
evbit
)
;
/*
*If delay and period are pre-set by the driver, thenautorepeating
* is handled by thedriver itself and we don't do it ininput.c.
*/
init_timer
(
&
dev
-
>
timer
)
;
if
(
!
dev
-
>
rep
[
REP_DELAY
]
&
&
!
dev
-
>
rep
[
REP_PERIOD
]
)
{
dev
-
>
timer
.
data
=
(
long
)
dev
;
dev
-
>
timer
.
function
=
input_repeat_key
;
//
消抖处理函数
,
采用延时消抖
dev
-
>
rep
[
REP_DELAY
]
=
500
;
//250;
dev
-
>
rep
[
REP_PERIOD
]
=
66
;
//33;
}
if
(
!
dev
-
>
getkeycode
)
dev
-
>
getkeycode
=
input_default_getkeycode
;
if
(
!
dev
-
>
setkeycode
)
dev
-
>
setkeycode
=
input_default_setkeycode
;
//
在
/sys/class/input
下创建以
input0,input1
为目录名的
input
类型设备
snprintf
(
dev
-
>
dev
.
bus_id
,
sizeof
(
dev
-
>
dev
.
bus_id
)
,
"input%ld"
,
(
unsigned
long
)
atomic_inc_return
(
&
input_no
)
-
1
)
;
if
(
dev
-
>
cdev
.
dev
)
dev
-
>
dev
.
parent
=
dev
-
>
cdev
.
dev
;
error
=
device_add
(
&
dev
-
>
dev
)
;
//
将设备登记到设备总线上
,
之后将以目录和文件的形式呈现
if
(
error
)
return
error
;
path
=
kobject_get_path
(
&
dev
-
>
dev
.
kobj
,
GFP_KERNEL
)
;
printk
(
KERN_INFO
"input:%s as %s/n"
,
dev
-
>
name
?
dev
-
>
name
:
"Unspecifieddevice"
,
path
?
path
:
"N/A"
)
;
kfree
(
path
)
;
error
=
mutex_lock_interruptible
(
&
input_mutex
)
;
if
(
error
)
{
device_del
(
&
dev
-
>
dev
)
;
return
error
;
}
list_add_tail
(
&
dev
-
>
node
,
&
input_dev_list
)
;
//
将设备放到
input
的链表上
,
该链表上存放着所有
input
类型的
dev
设备对象【
gliethttp.Leith
】
list_for_each_entry
(
handler
,
&
input_handler_list
,
node
)
input_attach_handler
(
dev
,
handler
)
;
//
从
input_handler_list
驱动链表上尝试匹配
,
是否有驱动该
dev
设备的
driver
驱动
,
如果有
,
那么将匹配的驱动绑定给
dev
设备
,
来驱动这个
dev.
input_wakeup_procfs_readers
(
)
;
mutex_unlock
(
&
input_mutex
)
;
return
0
;
}
drivers/
char
/
keyboard
.
c
kbd_init
(
)
=
>
input_register_handler
(
&
kbd_handler
)
;
注册键盘驱动到
input_handler_list
链表上
static
int
input_attach_handler
(
struct
input_dev
*
dev
,
struct
input_handler
*
handler
)
{
const
struct
input_device_id
*
id
;
int
error
;
if
(
handler
-
>
blacklist
&
&
input_match_device
(
handler
-
>
blacklist
,
dev
)
)
return
-
ENODEV
;
id
=
input_match_device
(
handler
-
>
id_table
,
dev
)
;
if
(
!
id
)
return
-
ENODEV
;
error
=
handler
-
>
connect
(
handler
,
dev
,
id
)
;
//ok,
找到驱动该
dev
的
driver,
那么尝试连接
if
(
error
&
&
error
!
=
-
ENODEV
)
printk
(
KERN_ERR
"input:failed to attach handler %s to device %s, "
"error:%d/n"
,
handler
-
>
name
,
kobject_name
(
&
dev
-
>
dev
.
kobj
)
,
error
)
;
return
error
;
}
kbd_connect
=
>
input_register_handle
=
>
input_open_device
=
>
pxa3xx_keypad_open
配置键盘
io
口
以下内容转自: http://ericxiao.cublog.cn/
九:evdev的初始化
Evdev的模块初始化函数为evdev_init().代码如下:
staticint __init evdev_init(void)
{
returninput_register_handler(&evdev_handler);
}
它调用了input_register_handler注册了一个handler.
注意到,在这里evdev_handler中定义的minor为EVDEV_MINOR_BASE(64).也就是说evdev_handler所表示的设备文件范围为(13,64)à(13,64+32).
从之前的分析我们知道.匹配成功的关键在于handler中的blacklist和id_talbe.Evdev_handler的id_table定义如下:
staticconst struct input_device_id evdev_ids[] = {
{ .driver_info = 1 }, /* Matches all devices*/
{}, /* Terminating zero entry*/
};
它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有inputdevice的.从前面的分析我们知道.匹配成功之后会调用handler->connect函数.
在Evdev_handler中,该成员函数如下所示:
staticint evdev_connect(struct input_handler *handler, struct input_dev*dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
interror;
for (minor = 0; minor < EVDEV_MINORS; minor++)
if (!evdev_table[minor])
break;
if (minor == EVDEV_MINORS) {
printk(KERN_ERR "evdev: no more free evdevdevices/n");
return -ENFILE;
}
EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个structevdev类型的数组.structevdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用.
这一段代码的在evdev_talbe找到为空的那一项.minor就是数组中第一项为空的序号.
evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
if (!evdev)
return -ENOMEM;
INIT_LIST_HEAD(&evdev->client_list);
spin_lock_init(&evdev->client_lock);
mutex_init(&evdev->mutex);
init_waitqueue_head(&evdev->wait);
snprintf(evdev->name, sizeof(evdev->name), "event%d",minor);
evdev->exist = 1;
evdev->minor = minor;
evdev->handle.dev = input_get_device(dev);
evdev->handle.name = evdev->name;
evdev->handle.handler = handler;
evdev->handle.private = evdev;
接下来,分配了一个evdev结构,并对这个结构进行初始化.在这里我们可以看到,这个结构封装了一个handle结构,这结构与我们之前所讨论的handler是不相同的.注意有一个字母的差别哦.我们可以把handle看成是handler和inputdevice的信息集合体.在这个结构里集合了匹配成功的handler和inputdevice
strlcpy(evdev->dev.bus_id, evdev->name,sizeof(evdev->dev.bus_id));
evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE +minor);
evdev->dev.class = &input_class;
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);
在这段代码里主要完成evdev封装的device的初始化.注意在这里,使它所属的类指向input_class.这样在/sysfs中创建的设备目录就会在/sys/class/input/下面显示.
error = input_register_handle(&evdev->handle);
if (error)
goto err_free_evdev;
error = evdev_install_chrdev(evdev);
if (error)
goto err_unregister_handle;
error = device_add(&evdev->dev);
if (error)
goto err_cleanup_evdev;
return 0;
err_cleanup_evdev:
evdev_cleanup(evdev);
err_unregister_handle:
input_unregister_handle(&evdev->handle);
err_free_evdev:
put_device(&evdev->dev);
returnerror;
}
注册handle,如果是成功的,那么调用evdev_install_chrdev将evdev_table的minor项指向evdev.然后将evdev->device注册到sysfs.如果失败,将进行相关的错误处理.
万事俱备了,但是要接收事件,还得要等”东风”.这个”东风”就是要打开相应的handle.这个打开过程是在文件的open()中完成的.
十:evdev设备结点的open()操作
我们知道.对主设备号为INPUT_MAJOR的设备节点进行操作,会将操作集转换成handler的操作集.在evdev中,这个操作集就是evdev_fops.对应的open函数如下示:
staticint evdev_open(struct inode *inode, struct file *file)
{
struct evdev *evdev;
struct evdev_client *client;
int i = iminor(inode) - EVDEV_MINOR_BASE;
int error;
if (i >= EVDEV_MINORS)
return -ENODEV;
error = mutex_lock_interruptible(&evdev_table_mutex);
if (error)
return error;
evdev = evdev_table[i];
if (evdev)
get_device(&evdev->dev);
mutex_unlock(&evdev_table_mutex);
if (!evdev)
return -ENODEV;
client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
if (!client) {
error = -ENOMEM;
goto err_put_evdev;
}
spin_lock_init(&client->buffer_lock);
client->evdev = evdev;
evdev_attach_client(evdev, client);
error = evdev_open_device(evdev);
if (error)
goto err_free_client;
file->private_data = client;
return 0;
err_free_client:
evdev_detach_client(evdev, client);
kfree(client);
err_put_evdev:
put_device(&evdev->dev);
return error;
}
iminor(inode) -EVDEV_MINOR_BASE就得到了在evdev_table[]中的序号.然后将数组中对应的evdev取出.递增devdev中device的引用计数.
分配并初始化一个client.并将它和evdev关联起来:client->evdev指向它所表示的evdev.将client挂到evdev->client_list上.将client赋为file的私有区.
对应handle的打开是在此evdev_open_device()中完成的.代码如下:
staticint evdev_open_device(struct evdev *evdev)
{
int retval;
retval = mutex_lock_interruptible(&evdev->mutex);
if (retval)
return retval;
if (!evdev->exist)
retval = -ENODEV;
else if (!evdev->open++) {
retval = input_open_device(&evdev->handle);
if (retval)
evdev->open--;
}
mutex_unlock(&evdev->mutex);
returnretval;
}
如果evdev是第一次打开,就会调用input_open_device()打开evdev对应的handle.跟踪一下这个函数:
intinput_open_device(struct input_handle *handle)
{
struct input_dev *dev = handle->dev;
int retval;
retval = mutex_lock_interruptible(&dev->mutex);
if (retval)
return retval;
if (dev->going_away) {
retval = -ENODEV;
goto out;
}
handle->open++;
if (!dev->users++ && dev->open)
retval = dev->open(dev);
if (retval) {
dev->users--;
if (!--handle->open) {
/*
* Make sure we are not delivering any moreevents
* through this handle
*/
synchronize_rcu();
}
}
out:
mutex_unlock(&dev->mutex);
return retval;
}
在这个函数中,我们看到.递增handle的打开计数.如果是第一次打开.则调用inputdevice的open()函数.
十一:evdev的事件处理
经过上面的分析.每当inputdevice上报一个事件时,会将其交给和它匹配的handler的event函数处理.在evdev中.这个event函数对应的代码为:
staticvoid evdev_event(struct input_handle*handle,
unsigned int type, unsigned int code, int value)
{
struct evdev *evdev = handle->private;
struct evdev_client *client;
struct input_event event;
do_gettimeofday(&event.time);
event.type = type;
event.code = code;
event.value = value;
rcu_read_lock();
client = rcu_dereference(evdev->grab);
if (client)
evdev_pass_event(client, &event);
else
list_for_each_entry_rcu(client, &evdev->client_list,node)
evdev_pass_event(client, &event);
rcu_read_unlock();
wake_up_interruptible(&evdev->wait);
}
首先构造一个structinput_event结构.并设备它的type.code,value为处理事件的相关属性.如果该设备被强制设置了handle.则调用如之对应的client.
我们在open的时候分析到.会初始化clinet并将其链入到evdev->client_list.这样,就可以通过evdev->client_list找到这个client了.
对于找到的第一个client都会调用evdev_pass_event().代码如下:
staticvoid evdev_pass_event(struct evdev_client*client,
struct input_event *event)
{
/*
*Interrupts are disabled, just acquire the lock
*/
spin_lock(&client->buffer_lock);
client->buffer[client->head++] = *event;
client->head &= EVDEV_BUFFER_SIZE - 1;
spin_unlock(&client->buffer_lock);
kill_fasync(&client->fasync, SIGIO,POLL_IN);
}
这里的操作很简单.就是将event保存到client->buffer中.而client->head就是当前的数据位置.注意这里是一个环形缓存区.写数据是从client->head写.而读数据则是从client->tail中读.
十二:设备节点的read处理
对于evdev设备节点的read操作都会由evdev_read()完成.它的代码如下:
staticssize_t evdev_read(struct file *file, char __user*buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
int retval;
if (count < evdev_event_size())
return -EINVAL;
if (client->head == client->tail && evdev->exist&&
(file->f_flags & O_NONBLOCK))
return -EAGAIN;
retval = wait_event_interruptible(evdev->wait,
client->head != client->tail || !evdev->exist);
if (retval)
return retval;
if (!evdev->exist)
return -ENODEV;
while (retval + evdev_event_size() <= count &&
evdev_fetch_next_event(client, &event)) {
if (evdev_event_to_user(buffer + retval,&event))
return -EFAULT;
retval += evdev_event_size();
}
returnretval;
}
首先,它判断缓存区大小是否足够.在读取数据的情况下,可能当前缓存区内没有数据可读.在这里先睡眠等待缓存区中有数据.如果在睡眠的时候,.条件满足.是不会进行睡眠状态而直接返回的.
然后根据read()提够的缓存区大小.将client中的数据写入到用户空间的缓存区中.
十三:设备节点的写操作
同样.对设备节点的写操作是由evdev_write()完成的.代码如下:
staticssize_t evdev_write(struct file *file, const char __user*buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
int retval;
retval = mutex_lock_interruptible(&evdev->mutex);
if (retval)
return retval;
if (!evdev->exist) {
retval = -ENODEV;
goto out;
}
while(retval < count) {
if (evdev_event_from_user(buffer + retval, &event)){
retval = -EFAULT;
goto out;
}
input_inject_event(&evdev->handle,
event.type, event.code, event.value);
retval += evdev_event_size();
}
out:
mutex_unlock(&evdev->mutex);
returnretval;
}
首先取得操作设备文件所对应的evdev.
实际上,这里写入设备文件的是一个event结构的数组.我们在之前分析过,这个结构里包含了事件的type.code和event.
将写入设备的event数组取出.然后对每一项调用event_inject_event().
这个函数的操作和input_event()差不多.就是将第一个参数handle转换为输入设备结构.然后这个设备再产生一个事件.
代码如下:
voidinput_inject_event(struct input_handle*handle,
unsigned int type, unsigned int code, int value)
{
struct input_dev *dev = handle->dev;
struct input_handle *grab;
unsigned long flags;
if (is_event_supported(type, dev->evbit, EV_MAX)){
spin_lock_irqsave(&dev->event_lock,flags);
rcu_read_lock();
grab = rcu_dereference(dev->grab);
if (!grab || grab == handle)
input_handle_event(dev, type, code, value);
rcu_read_unlock();
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}
我们在这里也可以跟input_event()对比一下,这里设备可以产生任意事件,而不需要和设备所支持的事件类型相匹配.
由此可见.对于写操作而言.就是让与设备文件相关的输入设备产生一个特定的事件.
将上述设备文件的操作过程以图的方式表示如下:
十四:小结
在这一节点,分析了整个input子系统的架构,各个环节的流程.最后还以evdev为例.将各个流程贯穿在一起.以加深对input子系统的理解.由此也可以看出.linux设备驱动采用了分层的模式.从最下层的设备模型到设备,驱动,总线再到input子系统最后到inputdevice.这样的分层结构使得最上层的驱动不必关心下层是怎么实现的.而下层驱动又为多种型号同样功能的驱动提供了一个统一的接口.