本篇主要讲2015年写的加密算法。包括:AES,AES-CMAC,HMAC,基于RSA与HMAC的数字签名算法。当时大概写了2天。哈哈!
AES是一个对称加密标准,用以取代DES的商业应用。其分组长度为128位,192位或者256位。
AES不同于典型的Feistel结构,在每一轮都使用代替和混淆来将整个数据分组作为一个单一的矩阵处理。对AES-128来说,输入的密钥被扩展成44个32位字组成的数组w[i]。每轮有4个不同的字作为改轮的轮密钥,总共进行11轮运算。AES的结构如图:
每轮的的基本结构由4个运算构成,分别是:字节代替、行移位、列混淆、轮密钥加。如图:
如上图,字节代替变换是一个简单的查表操作。AES定义了一个S盒,它由16*16个字节组成的矩阵,包含了8位所能表示的256个数的一个置换。State中的每个字节按照如下的方式映射为一个新的字节,把该字节的高4位作为行值,低四位作为列值,以这些行列值作为索引从S盒的对应位置取出元素作为输出。而其逆向操作则是有对应的逆S盒可进行查表。
正向行移位变换中,state的第一行保持不变,把state的第二行循环左移一个字节,state的第三行循环左移两个字节,state的第四行循环左移三个字节。
如上图,列混淆的正向变换是对每列单独进行操作。每列中的每个字节被映射为一个新值,此值由该列中的4个字通过函数变换得到。这个变换可有下面基于state的矩阵乘法表示:
如上图,在轮密钥加变换中,128位的state按位与128位的轮秘钥XOR。
AES密钥扩展算法的输入值是一个4个字,输出值是一个由44个字组成的移位线性数组。
输入密钥字节被复制到扩展密钥数组的前4个字。然后每次用四个字填充扩展密钥数组余下的部分。在扩展数组中,每一个新增的字w[i]的值依赖于w[i-1]和w[i-4]。在4个情形中,三个使用了异或。对w数组中下标为4的倍数的的元素采用了更复杂的函数来计算:
(1)字循环的功能时使一个字中的四个字节的循环左移一个字节,即将输入字[B0,B1,B2,B3]变成为[B1,B2,B3,B0].
(2)字代替利用S盒对输入字中的每个字节进行字节代替。
(3)步骤1和步骤2的结果再与轮常量Rcon[j]相异或。
编写类AES,分别实现AES轮函数中的四个基本操作、AES的密钥扩展、有限域上的乘法。AES类可以用于AES-128/AES-192/AES-256,在构造AES类时我们可以指定密钥的长度。
对于有限域GF(2,8)上的乘法,因为实际上只需要计算s*{01},s*{02},s*{03}的结果,所以这里我们只计算低字节。显然此时函数byte GF28Multi(byte s, byte a)的两个参数不是对称的。
为了便于测试,在aes.h头文件中我们加入了DEBUG宏定义,对所有的测试代码均采用条件编译的方式嵌入,测试时如果定义该宏,则条件编译后会包含测试用的代码,这时会打印出整个AES加密过程的详细信息。
在main()函数中,我们同样采用条件编译的方式将AES与CMAC的测试代码融合在一起,如果宏AES_CMAC_TEST被定义,则进行CMAC的测试,否则进行AES的测试。
测试AES,适当地设置断点,可以看到中间结果如图:
查看第1轮的详细信息:
对照密码编码学与网络安全——原理与实践(中文版)第121页(或者英文版第171页)的AES例子,分别比对各轮的结果,符合预期。
加密到第10轮,产生密文:
接着进行解密,如图:
解密时逆用密钥,最后得到明文。
注释掉DEBUG宏定义,再次运行,结果如下:
解密出来的结果与输入的消息是一致的。
/************************************************************************/
/*AES: AES-128,AES-192,AES-256
/*Author: chenweiliang
/*Version: 1.0
/*Note: The input data must be 128-bit.
/* To see all information output,please uncommet the macro
/* definition "#define DEBUG"
/************************************************************************/
#pragma once
#include
#include
#ifndef DEBUG
//#define DEBUG
#endif // !DEBUG
typedef unsigned char byte;
//length of secret key
enum KEYLENGTH
{
KEY_LENGTH_16BYTES, KEY_LENGTH_24BYTES, KEY_LENGTH_32BYTES
};
class AES
{
public:
AES();
AES(const byte key[],enum KEYLENGTH keyBytes);
virtual ~AES();
void encrypt(const byte data[16], byte out[16]);
void decrypt(const byte data[16], byte out[16]);
private:
//
int mNb;
//word length of the secret key used in one turn
int mNk;
//number of turns
int mNr;
//the secret key,which can be 16bytes,24bytes or 32bytes
byte mKey[32];
//the extended key,which can be 176bytes,208bytes,240bytes
byte mW[60][4];
static byte sBox[];
static byte invSBox[];
//constant
static byte rcon[];
void setKey(const byte key[], const int keyBits);
void subBytes(byte state[][4]);
void shiftRows(byte state[][4]);
void mixColumns(byte state[][4]);
void addRoundKey(byte state[][4], byte w[][4]);
void invSubBytes(byte state[][4]);
void invShiftRows(byte state[][4]);
void invMixColumns(byte state[][4]);
void keyExpansion();
//
byte GF28Multi(byte s, byte a);
void rotWord(byte w[]);
void subWord(byte w[]);
//get the secret key
void getKeyAt(byte key[][4],int i);
#ifdef DEBUG
void print128(byte state[16]);
void print128(byte state[4][4]);
#endif // DEBUG
};
/************************************************************************/
/*AES: AES-128,AES-192,AES-256
/*Author: chenweiliang
/*Version: 1.0
/*Note: The input data must be 128-bit.
/************************************************************************/
#include "AES.h"
byte AES::sBox[] =
{ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, /*0*/
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, /*1*/
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, /*2*/
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, /*3*/
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, /*4*/
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, /*5*/
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, /*6*/
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, /*7*/
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, /*8*/
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, /*9*/
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, /*a*/
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, /*b*/
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, /*c*/
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, /*d*/
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, /*e*/
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 /*f*/
};
byte AES::invSBox[] =
{ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, /*0*/
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, /*1*/
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, /*2*/
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, /*3*/
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, /*4*/
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, /*5*/
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, /*6*/
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, /*7*/
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, /*8*/
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, /*9*/
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, /*a*/
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, /*b*/
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, /*c*/
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, /*d*/
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, /*e*/
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d /*f*/
};
byte AES::rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
AES::AES()
{
//If no key is input,use the default key
int keyBits = 128;
byte key[16] = {
0x0f, 0x15, 0x71, 0xc9,
0x47, 0xd9, 0xe8, 0x59,
0x0c, 0xb7, 0xad, 0xd6,
0xaf, 0x7f, 0x67, 0x98
};
setKey(key, keyBits);
keyExpansion();
}
AES::AES(const byte key[],enum KEYLENGTH keyBytes){
int keyBits;
if (keyBytes == KEYLENGTH::KEY_LENGTH_16BYTES){
keyBits = 128;
}
else if (keyBytes==KEYLENGTH::KEY_LENGTH_24BYTES){
keyBits == 192;
}
else if (keyBytes==KEYLENGTH::KEY_LENGTH_32BYTES){
keyBits == 256;
}
setKey(key,keyBits);
keyExpansion();
}
void AES::setKey(const byte key[], const int keyBits){
mNb = 4;
if (keyBits == 128){
mNk = 4;
mNr = 10;
}
else if (keyBits == 192){
mNk = 6;
mNr = 12;
}
else if (keyBits == 256){
mNk = 8;
mNr = 14;
}
memcpy(mKey,key,mNk*4);
}
void AES::keyExpansion(){
//the first mNk words will be filled in mW derictly
for (int i = 0; i < mNk; i++){
for (int j = 0; j < 4; j++){
//arranged vertically
mW[i][j] = mKey[j+i*4];
}
}
//generate the secret key words
for (int i = mNk; i < mNb*(mNr + 1); i++){
//last secret key word
byte pre_w[4];
for (int k = 0; k < 4; k++){
pre_w[k] = mW[i-1][k];
}
if(i%mNk == 0){
rotWord(pre_w);
subWord(pre_w);
pre_w[0] = pre_w[0] ^= rcon[i / mNk - 1];
}
else if ((mNk>6)&&(i%mNk==4)){
subWord(pre_w);
}
for (int k = 0; k < 4; k++){
mW[i][k] = pre_w[k] ^ mW[i-mNk][k];
}
}
}
void AES::subBytes(byte state[][4])
{
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
state[i][j] = sBox[state[i][j]];
}
}
}
void AES::shiftRows(byte state[][4])
{
byte t[4];
for (int i = 1; i < 4; i++){
for (int j = 0; j < 4; j++){
t[j] = state[i][(i + j) % 4];
}
for (int j = 0; j < 4; j++){
state[i][j] = t[j];
}
}
}
void AES::mixColumns(byte state[][4])
{
byte t[4];
for (int j = 0; j < 4; j++){
for (int i = 0; i < 4; i++){
t[i] = state[i][j];
}
for (int i = 0; i < 4; i++){
state[i][j] = GF28Multi(t[i], 0x02)
^ GF28Multi(t[(i + 1) % 4], 0x03)
^ GF28Multi(t[(i + 2) % 4], 0x01)
^ GF28Multi(t[(i + 3) % 4], 0x01);
}
}
}
void AES::addRoundKey(byte state[][4], byte w[][4])
{
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
state[i][j] ^= w[i][j];
}
}
}
void AES::invSubBytes(byte state[][4])
{
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
state[i][j] = invSBox[state[i][j]];
}
}
}
void AES::invShiftRows(byte state[][4])
{
byte t[4];
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
t[j] = state[i][(j-i + 4) % 4];
}
for (int j = 0; j < 4; j++){
state[i][j] = t[j];
}
}
}
void AES::invMixColumns(byte state[][4])
{
byte t[4];
//calculate columns by columns
for (int j = 0; j < 4; j++){
for (int i = 0; i < 4; i++){
t[i] = state[i][j];
}
for (int i = 0; i < 4; i++){
state[i][j] = GF28Multi(t[i], 0x0e)
^ GF28Multi(t[(i+1)%4],0x0b)
^ GF28Multi(t[(i+2)%4],0x0d)
^ GF28Multi(t[(i+3)%4],0x09);
}
}
}
void AES::rotWord(byte w[])
{
byte t;
t = w[0];
w[0] = w[1];
w[1] = w[2];
w[2] = w[3];
w[3] = t;
}
void AES::subWord(byte w[])
{
for (int i = 0; i < 4; i++){
w[i] = sBox[w[i]];
}
}
//calculate the least significant byte only for we only need
//the least significant byte
byte AES::GF28Multi(byte s,byte a){
byte t[4];
byte result = 0;
t[0] = s;
//calculate s*{02},s*{03},s*{04}
for (int i = 1; i < 4; i++){
t[i] = t[i - 1] << 1;
if (t[i - 1] & 0x80){
t[i] ^= 0x1b;
}
}
//multiply a and s bit by bit and sum together
for (int i = 0; i < 4; i++){
if ((a >> i) & 0x01){
result ^= t[i];
}
}
return result;
}
void AES::encrypt(const byte data[16], byte out[16])
{
byte state[4][4];
byte key[4][4];
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
state[i][j] = data[i+j*4];
}
}
#ifdef DEBUG
printf("plaintext:\n");
print128(state);
printf("--------------------------Round 0 begin:--------------------------\n");
#endif // DEBUG
getKeyAt(key, 0);
addRoundKey(state, key);
#ifdef DEBUG
printf("addRoundKey:\n");
print128(state);
#endif // DEBUG
for (int i = 1; i <= mNr; i++){
#ifdef DEBUG
printf("--------------------------Round %d begin:--------------------------\n",i);
#endif // DEBUG
subBytes(state);
#ifdef DEBUG
printf("subBytes:\n");
print128(state);
#endif // DEBUG
shiftRows(state);
#ifdef DEBUG
printf("shiftRows:\n");
print128(state);
#endif // DEBUG
if (i != mNr){
mixColumns(state);
#ifdef DEBUG
printf("mixColumns:\n");
print128(state);
#endif // DEBUG
}
getKeyAt(key, i);
addRoundKey(state, key);
#ifdef DEBUG
printf("addRoundKey:\n");
print128(state);
#endif // DEBUG
}
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
out[i+j*4] = state[i][j];
}
}
}
void AES::decrypt(const byte data[16], byte out[16])
{
byte state[4][4];
byte key[4][4];
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
state[i][j] = data[i+j*4];
}
}
getKeyAt(key, mNr);
addRoundKey(state,key);
for (int i = (mNr - 1); i >= 0; i--){
invShiftRows(state);
invSubBytes(state);
getKeyAt(key, i);
addRoundKey(state,key);
if (i){
invMixColumns(state);
}
}
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
out[i + j * 4] = state[i][j];
}
}
}
#ifdef DEBUG
void AES::print128(unsigned char state[16]){
for (int i = 0; i < 16; i++){
printf("%02hhx ", state[i]);
}
}
void AES::print128(unsigned char state[4][4]){
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
printf("%02hhx ", state[i][j]);
}
printf("\n");
}
}
#endif // DEBUG
//get the secret key for round "index",which will
//be arranged vetically
void AES::getKeyAt(byte key[][4], int index){
for (int i = index*4; i < index*4+4; i++){
for (int j = 0; j < 4; j++){
key[j][i-index*4] = mW[i][j];
}
}
#ifdef DEBUG
printf("secret key for round %d\n", index);
print128(key);
#endif // DEBUG
}
AES::~AES()
{
}
[1] javafr_RFC_4493
[2]AES加密学习笔记http://blog.csdn.net/whycadi/article/details/6917394
[3]AES加密算法http://www.cnblogs.com/mingcn/archive/2010/10/31/aes_c.html