HDU - 4725
This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.
The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.
You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.
Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.
Help us calculate the shortest path from node 1 to node N.
Input
The first line has a number T (T <= 20) , indicating the number of test cases.
For each test case, first line has three numbers N, M (0 <= N, M <= 10 5) and C(1 <= C <= 10 3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.
The second line has N numbers l i (1 <= l i <= N), which is the layer of i th node belong to.
Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10 4), which means there is an extra edge, connecting a pair of node u and v, with cost w.
Output
For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.
If there are no solutions, output -1.
Sample Input
2 3 3 3 1 3 2 1 2 1 2 3 1 1 3 3 3 3 3 1 3 2 1 2 2 2 3 2 1 3 4
Sample Output
Case #1: 2 Case #2: 3
题意:给出n个点,每个点有对应的层,在相邻层的两点间的权值为c,同时还有m条边,每条边两点的距离为w。求1到n的最短路。
题解:这题建图很难,我开始用n方的方法建图,结果1e5的数据就超时了。后来网上看到一种方法,是把一个层看做一个点,比如第一层看作第n + 1个点,那么n + 1到属于第一层的距离的点为0,且为单向边(如果为双向边的话相同层的两点可以随意到达了),然后每层的点与相邻的层点相连,如2与n + 1、n + 3相连,单向边。这里好像不需要层点与层点相连,因为已经可以从普通点走向层点了,就不需要再经过层点到层点了。
#include
#include
#include
#include
#include
#include
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1000100;
int dis[maxn],head[maxn],inq[maxn],a[maxn],n,m,c,tot;
struct edge
{
int v;
int w;
int next;
}edg[maxn];
void addnode(int u,int v,int w)
{
edg[tot].v = v;
edg[tot].w = w;
edg[tot].next = head[u];
head[u] = tot++;
}
void SPFA()
{
memset(dis,inf,sizeof(dis));
memset(inq,0,sizeof(inq));
queueQ;
Q.push(1);
inq[1] = 1;
dis[1] = 0;
while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = 0;
for(int i = head[u];i != -1;i = edg[i].next)
{
int v = edg[i].v,w = edg[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(!inq[v])
{
Q.push(v);
inq[v] = 1;
}
}
}
}
}
int main()
{
int t;
int cas = 0;
scanf("%d",&t);
while(t--)
{
memset(head,-1,sizeof(head));
tot = 0;
scanf("%d %d %d",&n,&m,&c);
for(int i = 1;i <= n;i++)
{
scanf("%d",&a[i]);
}
for(int i = 1;i <= n ;i++)
{
addnode(n + a[i],i,0);//层点通向该层的点建边
if(a[i] > 1)
addnode(i,n + a[i] - 1,c);//点与相邻层层点建边
if(a[i] < n)
addnode(i,n + a[i] + 1,c);
}
for(int i = 1;i <= m;i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);//点与点建边
addnode(u,v,w);
addnode(v,u,w);
}
SPFA();
if(dis[n] == inf) printf("Case #%d: -1\n",++cas);
else printf("Case #%d: %d\n",++cas,dis[n]);
}
return 0;
}